id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
-556 | \pi \cdot \frac{1}{3} \cdot 38 - \pi \cdot 12 = 2/3 \cdot \pi |
8,561 | 0 = (i*\pi*2 - 2*\pi*i)/(i*2) |
-23,451 | \frac{2}{15} = 2 \cdot \frac15/3 |
10,931 | \sin(π\times 19/2) = \sin(\frac{21\times π}{2}\times 1 - \frac{2\times π}{2}) |
13,531 | 13!/7! - 12!/7! = 1140480 |
-20,236 | \frac{1}{-2\cdot z + 4\cdot (-1)}\cdot (4\cdot (-1) - 2\cdot z)\cdot (-\tfrac{1}{10}\cdot 3) = \frac{1}{-20\cdot z + 40\cdot (-1)}\cdot (12 + 6\cdot z) |
1,573 | \tan\left(\frac{1}{z_2} \cdot z_1\right) = \theta \Rightarrow \operatorname{atan}(\theta) = \dfrac{z_1}{z_2} |
5,837 | \frac{1}{\beta^{-k}*\frac{1}{k!}} = k!*\beta^k |
18,909 | 60/2\cdot 2/3\cdot 4/5 = 16 |
-12,606 | 16 = \dfrac{32}{2} |
2,292 | \frac{f_x}{f_x + 1} = \dfrac{\dfrac{1}{f_x}\cdot f_x}{\frac{1}{f_x} + 1} |
5,561 | \dfrac{1}{2\cdot n}\cdot ((-1) + n\cdot 2) = g_n \implies 1 - \frac{1}{2\cdot n} = g_n |
-4,551 | \dfrac{-x-13}{x^2-2x-3} = \dfrac{3}{x+1} + \dfrac{-4}{x-3} |
19,197 | R*2 = \dfrac{a}{\sin\left(a\right)} \Rightarrow a/(2*R) = \sin\left(a\right) |
-6,637 | \frac{4}{8 + z^2 + 9*z} = \frac{1}{(z + 8)*(z + 1)}*4 |
-18,744 | \left(-1\right) \cdot 0.0401 + 0.9332 = 0.8931 |
-5,778 | \frac{x \cdot 2}{\left(x + 4 \cdot (-1)\right) \cdot (x + 3 \cdot \left(-1\right))} = \dfrac{x \cdot 2}{12 + x^2 - 7 \cdot x} |
25,578 | Z \cdot X = I_l \Rightarrow I_l = X \cdot Z |
13,915 | \pi/4 + \pi = \dfrac{5}{4}\cdot \pi |
10,233 | y^3 = 2 + 11\cdot i + 2 - 11\cdot i + 3\cdot ((2 + 11\cdot i)\cdot (2 - 11\cdot i))^{\frac{1}{3}}\cdot y = 4 + 15\cdot y |
5,557 | \mathbb{E}(Q_2^2) = \mathbb{E}(Q_1^2) \mathbb{E}((1 + Q_2) * (1 + Q_2)) = \mathbb{E}(Q_1) (1 + 2\mathbb{E}(Q_2) + \mathbb{E}(Q_2^2)) |
-5,041 | 36.8\cdot 10^{4 - 2} = 36.8\cdot 10^2 |
30,739 | \frac{1}{32}\cdot 64 = 2 |
-22,368 | z^2 - 7z + 10 = (z + 5(-1)) (2(-1) + z) |
-29,150 | 2*3 + 3*0 = 6 |
22,471 | 0 + \frac{1}{x + 2}*\left(x^4*2 + 1\right) = \dfrac{1}{2 + x}*(1 + x^4*2) |
36,625 | 18 = 21 + 3\cdot \left(-1\right) |
13,586 | \binom{4}{2}*\binom{12}{3} = \binom{23}{3} - \binom{13}{3} - \binom{11}{3} |
28,591 | \frac{1}{-\frac{1}{d_1} + \dfrac{1}{d_1 - \tfrac{1}{d_2}}} = d_1 d_2 d_1 - d_1 |
28,300 | 14 + (3 + u)^2 = 23 + u^2 + 6u |
-2,662 | 2\sqrt{7} = \sqrt{7}\cdot (5 + 3\left(-1\right)) |
-796 | 7723/10000 = 0 + \frac{7}{10} + \frac{7}{100} + \frac{2}{1000} + \dfrac{1}{10000}3 |
-5,013 | 0.94\cdot 10^3 = 10^{3\cdot (-1) + 6}\cdot 0.94 |
18,766 | (a^2 + c \cdot a + c \cdot c) \cdot (a - c) = -c^3 + a^3 |
-20 | 1 = 3 \left(-1\right) + 4 |
24,138 | \frac{n \cdot 9}{7 + n} \cdot 1 = \tfrac{9}{\frac7n + 1} |
928 | (2 \cdot 13)^4 + 13^4 \cdot 239 + 13^4 = (2 \cdot 2 \cdot 13)^4 |
28,703 | \log_e(1 + 1/2) = \log_e(3/2) |
-3,849 | 6t \cdot t/11 = 6/11 t^2 |
-11,524 | 1 + 21 i = 21 i - 9 + 10 |
18,570 | z^{g_1 + g_2} = z^{g_2} z^{g_1} |
-6,351 | \frac{1}{r\cdot 5 + 50} = \frac{1}{5(10 + r)} |
13,603 | a = f = \frac{1}{2}(a + f) |
-5,690 | \frac{1}{9 + n^2 + 10*n} = \dfrac{1}{(9 + n)*(n + 1)} |
3,197 | 672 = \frac{20160}{3\cdot 5\cdot 2}\cdot 1 |
205 | -(e*i*y/2 - e^{((-1)*i*y)/2})^2 = -(2*i)^2*\sin^2{\frac{y}{2}} = 4*\sin^2{y/2} |
-30,578 | 35 \cdot z + 14 \cdot (-1) = (2 \cdot \left(-1\right) + 5 \cdot z) \cdot 7 |
24,083 | -q \cdot p \cdot 2 + (q + p)^2 = p^2 + q \cdot q |
20,620 | 2\cdot y + 5 + (y + 2\cdot (-1))\cdot \left(2 + y^2 + 2\cdot y\right) = y \cdot y^2 + 1 |
11,569 | a \cdot b = \frac{1}{\frac1a \cdot 1/b} = \dfrac{1}{\frac1b \cdot 1/a} = b \cdot a |
29,370 | \mathbb{Var}[C \cdot Z] = \mathbb{E}[(C \cdot Z)^2] - \mathbb{E}[C \cdot Z] \cdot \mathbb{E}[C \cdot Z] = \mathbb{E}[(C \cdot Z)^2] - \left(\mathbb{E}[C] \cdot \mathbb{E}[Z]\right)^2 |
17,634 | A = (x + J)^{\frac{1}{2}} \Rightarrow A = x + J |
23,497 | 0/1 + 2 = \frac{2}{1} |
22,752 | 1/\tan(\theta) = \tan\left(\dfrac12*\pi - \theta\right) |
15,743 | x^2 + \left(x + 4\right)^2 + (x + 6) \cdot (x + 6) + (x + 10)^2 + (x + 12)^2 = 296 + 5 \cdot x^2 + 64 \cdot x |
5,249 | C_2 - G - C_1 - x = C_2 - C_1 - G - x |
-3,178 | \sqrt{16} \sqrt{7} - \sqrt{7} \sqrt{9} = \sqrt{7}*4 - 3 \sqrt{7} |
34,712 | 324 = (4 + 12 + 2) \cdot 3! \cdot 3 |
37,739 | \frac{(\frac1m\cdot l) \cdot (\frac1m\cdot l)}{m}\cdot \tfrac{1}{1 + (\frac{l}{m})^2 \cdot (l/m)} = \frac{l \cdot l}{m^3 + l^3} |
36,032 | \cos{\theta*3} = -\cos{\theta}*3 + \cos^3{\theta}*4 |
48,278 | c_{n+1} = 3\cdot x + 4^n - x \implies c_{n+1} = x\cdot 2 + 4^n |
17,533 | (x - 2 \cdot R) \cdot (x - 2 \cdot R) = x - 4 \cdot R + 4 \cdot R \cdot R = x - 4 \cdot (R - R \cdot R) |
16,647 | 6/27 = \frac{4}{6^3}\times 3\times 2^2 |
29,574 | (x^2 + y^2)^2 = x^4 + 2 x^2 y^2 + x^4 \geq x^4 + y^4 |
-2,460 | \sqrt{7} \cdot \left(2 \cdot \left(-1\right) + 4\right) = 2 \cdot \sqrt{7} |
24,106 | \frac{4*6*5}{6} = 20 |
7,870 | \frac{5^n + 3^n}{7^n + (-2)^n} = \dfrac{(\tfrac{5}{7})^n + (3/7)^n}{1 + (-2/7)^n} |
-4,844 | \frac{1.6}{10} = 1.6/10 \cdot 10 \cdot 10 = 1.6 \cdot 10^1 |
16,157 | \vartheta c + xb = xb + c\vartheta + xc |
28,986 | \tan{x} = \cot(-x + \frac{1}{2} \cdot \pi) |
5,511 | a*k*x*k' = k'*x*k*a |
27,519 | l = l + (x^2 - l^2)/2 \Rightarrow |x| = l |
5,418 | d/dz (z\ln(z)) = 1 + \ln\left(z\right) |
3,758 | \cos^2(w*x) = (1 + \cos(2*w*x))/2 = 1/2 + \dfrac{1}{2}*\cos(2*w*x) |
2,726 | \cos(dz + b) d = \frac{\partial}{\partial z} \sin(dz + b) |
34,129 | -\frac14*33 = -\dfrac{33}{4} |
871 | 3\cdot i = (a + b\cdot i)^2 = a^2 - b^2 + 2\cdot a\cdot b\cdot i |
-7,959 | \left(-180 - 20*i + 225*i + 25*\left(-1\right)\right)/41 = \frac{1}{41}*(-205 + 205*i) = -5 + 5*i |
-1,126 | (1/8*(-3))/(1/2*7) = \frac{2}{7}*\left(-\frac{1}{8}*3\right) |
16,312 | \frac{1}{2^{-\sqrt{n}}} \cdot n^2 = n^2 \cdot 2^{\sqrt{n}} |
31,027 | n = 3 \cdot m + 2 rightarrow \frac{n^2}{3} \cdot 1 = 1 + m \cdot m \cdot 3 + 4 \cdot m |
23,600 | r/s + a/b = \frac{1}{s \cdot b} \cdot (b \cdot r + a \cdot s) |
4,140 | b = 4\cdot \left(-1\right) + \frac{a^2}{2} \Rightarrow a^2 = 2\cdot (b + 4) = 2\cdot b + 8 |
21,638 | \left(1 + y\right)\cdot (y + \left(-1\right)) = y \cdot y + \left(-1\right) |
13,607 | \tan(h) = \frac{1}{\cos\left(h\right)}*\sin(h) |
6,050 | \lambda\cdot I = \lambda\cdot I\cdot \frac1Z\cdot Z = \frac{1}{Z}\cdot I\cdot Z\cdot \lambda |
-20,699 | \tfrac{1}{(-1) + a} \cdot ((-7) \cdot a) \cdot 9/9 = \dfrac{\left(-63\right) \cdot a}{9 \cdot (-1) + a \cdot 9} |
-12,113 | \frac{14}{15} = \dfrac{1}{6*\pi}*s*6*\pi = s |
33,558 | 60 = 160 + 100\cdot (-1) |
35,249 | x/dx = \dfrac{1}{dx \cdot \frac1x} |
-11,521 | 10 + 4 \cdot \left(-1\right) + 22 \cdot i = 6 + 22 \cdot i |
14,633 | -2^2 + 5 \cdot 5 = 11^2 - 10^2 |
-18,300 | \frac{1}{a^2 + 9 \cdot a} \cdot (9 + a^2 + 10 \cdot a) = \frac{1}{(9 + a) \cdot a} \cdot (a + 9) \cdot (1 + a) |
-20,518 | \dfrac{1}{9}2\cdot 10 s/(10 s) = 20 s/(90 s) |
13,942 | 1680 = \frac{1}{3! \cdot 3! \cdot 3!} 9! |
15,871 | 14 = \left\lfloor{\frac{1}{2}((-1) + 30)}\right\rfloor |
38,503 | 4 \cdot \frac{3!}{2!} = 12 |
5,764 | ((-1) + \vartheta)! = \frac{1}{\vartheta}\vartheta! |
38,974 | \dfrac16*4 = 2/3 |
30,264 | a + h \neq 0 rightarrow -a \neq h |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.