id
int64
-30,985
55.9k
text
stringlengths
5
437k
976
(a + b)^2 = a^2 + 2 a b + b b
6,551
34 + 500 + 334 + 200 + 167\cdot (-1) + 100\cdot (-1) + 67\cdot (-1) = 734
9,557
a_1 \cdot (2/9)^{1 + (-1)} = a_1
2,823
1/(x*5) = \tfrac{1}{5*x}
9,242
\frac{-\dfrac{1}{t}\cdot 3 + 1}{2 + \frac{1}{t}} = \frac{1}{1 + 2\cdot t}\cdot (3\cdot (-1) + t)
-1,164
-\frac{1}{56}*21 = ((-21)*\frac17)/(56*\frac{1}{7}) = -3/8
15,312
\dfrac{1}{25}3 = 3/50 + 3/50
5,911
a^2 - 4 a + 5 \left(-1\right) = (a + 5 (-1)) (a + 1) = 0\Longrightarrow -1 = a, 5
10,559
v \times 2^{v + 1} + 1 = v \times 2^{1 + v} + 1
41,830
( -2, 1, 1)*( 1, 1, 1) = -2 + 1 + 1 = 0
20,181
(2 + n)^2 - n * n = 4*(n + 1)
2,412
396396 = 11^2 \cdot 3^2 \cdot 2^2 \cdot 7 \cdot 13
15,977
y^2 + y + 1 = \frac{1}{(-1) + y}*(\left(-1\right) + y^3)
12,182
-(l_1 + (-1)) + l_2 - l_1 = l_2 - l_1 \cdot 2 + 1
2,172
\cos{2} \lt 1 - \frac{1}{2!}*2^2 + \frac{1}{4!}*2^4 = -1/3 \lt 0
4,195
\overline{e^{m\cdot z + i\cdot r}} = \overline{e^{m\cdot z}\cdot e^{i\cdot r}} = e^{m\cdot z}\cdot e^{-i\cdot r} = e^{m\cdot z - i\cdot r}
18,915
10/32 = \dfrac{9}{32} + \frac{1/2}{4} \cdot 1/4
29,856
V - 1/2 - -1/2 + Y = -Y + V
4,470
7(-1) + 6 \cdot 7 + 6(-1) = 29
5,929
(y + 2)*(2*(-1) + y) = y^2 + 4*(-1)
4,481
-3(x + 3)^{1/2} + (x + 3)^{3/2} = (3 + x)^{1/2} x
29,968
117 = (11 - f)*\left(11 + f\right) = 121 - f^2
3,365
\left(5 \cdot \left(-1\right) + d\right) \cdot z + (z^2 - 4 \cdot z + 1) \cdot (z + \left(-1\right)) = (-1) + z^3 - 5 \cdot z^2 + d \cdot z
7,894
b_x = b_x \cdot 2
13,715
( B \cdot B^t \cdot x, w) = \left( B^t \cdot x, B^t \cdot w\right) = ( x, B \cdot B^t \cdot w)
-19,348
\dfrac{5 / 6}{2 \cdot 1/9}1 = \frac{9}{2} \cdot 5/6
16,062
10^{0.1*t} = 10^{t*0.05*2}
2,036
\frac{\partial}{\partial z_2} (z_2 z_1 \cdot 8) = 8\frac{\partial}{\partial z_2} z_2 z_1 + 8z_2 \frac{\partial}{\partial z_2} z_1
9,112
\frac{1}{2\pi}c = \frac{1}{2}c \pi = \frac{c}{2}\pi
36,447
f \cdot e = e \cdot f
2,115
y/z = y/z
15,569
\frac23\cdot \tfrac{1}{3}\cdot 2 = 2\cdot 2/\left(3\cdot 3\right) = 4/9
-2,005
\pi/2 = \frac{\pi}{12} + \pi \cdot 5/12
19,105
2^{2 \cdot n} = 0 + 2^{2 \cdot n}
23,704
z^i = e^{i*\ln(z)} = \cos(\ln(z)) + i*\sin\left(\ln\left(z\right)\right)
2,710
fhe = ef h
-4,430
-\frac{2}{4 + x} - \frac{1}{x + (-1)} = \frac{-x\cdot 3 + 2\cdot (-1)}{4\cdot (-1) + x^2 + 3\cdot x}
5,493
\frac{1}{7} \cdot (64 + 433) = 71
4,896
r \cdot r/4 - 1/8 = r^2/4 - \frac{2}{16}
4,270
\frac{24}{8} = \frac{12}{4} = \frac{6}{2} = \frac{3}{1} = 3
-19,460
7*1/5/(\dfrac{1}{9}*8) = \dfrac{9}{8}*\frac75
30,408
\left((1 + (-1))^2 + 1\right)*1 * 1 = 1 * 1
13,549
3\cdot x = k \implies \frac{k}{3}\cdot k = x^2\cdot 3
-3,739
q \cdot 8 = 8 \cdot q
6,530
g\cdot b^j = b^j\cdot g
-1,253
\frac{54}{56} = 54\cdot 1/2/(56\cdot 1/2) = \frac{27}{28}
22,522
hG = Gh
-23,598
2/7 \cdot 2/5 = 4/35
12,377
c \cdot c^2 \cdot d^3 = (c \cdot d)^3
6,331
(z - \sqrt{2}) (\sqrt{2} + z) = 2 (-1) + z^2
820
2^{1/2} + (-1) = \tan{\pi/8}
5,457
s^2 + 2\cdot \left(-1\right) - 2\cdot s + 3 = s^2 - 2\cdot s + 1 = (s + (-1))^2
7,133
\dfrac{524160}{5 \cdot 3 \cdot 2 \cdot 4} \cdot 1 = \binom{16}{5}
11,387
35/768\times \frac{4!}{2!\times 2!} = \dfrac{1}{768}\times 210
11,395
z + z \cdot \vartheta = z \cdot (1 + \vartheta)
35,581
\alpha + 1 + \alpha + \left(-1\right) = 2\times \alpha = -\alpha
-5,679
\dfrac{6*\left(-1\right) + 3*m}{96 + 3*m^2 - 36*m} = \frac{1}{3*m^2 - 36*m + 96}*(6*(-1) + m*6 + 24*(-1) - m*3 + 24)
-9,640
-\dfrac{1}{25}\cdot 20 = -\frac45
32,281
D^{\phi} \cdot x_1^{\phi} = (D \cdot x_1)^{\phi} = \left(x_1 \cdot D\right)^{\phi} = x_1^{\phi} \cdot D^{\phi}
700
a^{-x} = (e^{\ln(a)})^{-x} = e^{-x \cdot \ln(a)}
12,000
1 = x \cdot c \Rightarrow \frac1c = x
20,252
10^6 = 1000 \cdot 1000
-20,735
\frac{1}{-12} (-y \cdot 14 + 12 (-1)) = (-y \cdot 7 + 6 \left(-1\right))/(-6) \cdot 2/2
-4,834
10^9\cdot 57.6 = 57.6\cdot 10^{4 + 5}
14,835
\dfrac{a^{1/3}}{a} = a^{\dfrac{1}{3} + (-1)} = a^{-2/3} = \frac{1}{a^{\dfrac23}} = \frac{1}{a^{2/3}}
-3,607
z\cdot 11/8 = \dfrac{11}{8}\cdot z
-4,124
40/96 \cdot \tfrac{1}{z^3} \cdot z^2 \cdot z = \frac{z^3 \cdot 40}{z^3 \cdot 96}
-6,131
\dfrac{3}{2\cdot (5\cdot \left(-1\right) + k)} = \frac{1}{10\cdot (-1) + 2\cdot k}\cdot 3
8,916
5 + \cos(x) = 14.5 \Rightarrow \cos(x) = 9.5
-20,483
\tfrac{1}{48 + 8\cdot r}\cdot (24\cdot (-1) + r\cdot 8) = 8/8\cdot \frac{1}{6 + r}\cdot \left(3\cdot (-1) + r\right)
34,405
39^5 + 80^5 + 123^5 = 125539 * 125539*2
31,857
\left(-1\right) + x^{12} = ((-1) + x^6)\cdot (x^6 + 1)
-5,329
1.82\cdot 10 = \frac{1.82}{10^5}\cdot 10 = 1.82/10000
39,025
i = -i \Rightarrow i = 0
-2,002
\pi*5/4 = \pi*11/12 + \pi/3
16,108
\frac{ln}{xk} = \frac{n*1/x}{k*1/l}1
35,499
-1/2 = 1 + 1 + 1 + 1 + ...
-23,681
\dfrac{1}{56}\cdot 15 = 5/7\cdot \frac38
-3,957
\frac{1}{n^3} \cdot n^2 = \frac{n \cdot n}{n \cdot n \cdot n} = \frac{1}{n}
16,295
\frac{1}{(n - k)! \cdot k!} \cdot n! = {n \choose k}
-30,567
\frac{1}{t + 3 \left(-1\right)} (t t + 5 t + 24 \left(-1\right)) = \frac{1}{t + 3 (-1)} (t + 8) \left(t + 3 (-1)\right) = t + 8
3,081
(1 + k) \cdot (1 + k) \cdot (2 + k) = (k^2 + 3 \cdot k + 2) \cdot (k + 1)
7,012
\frac{1}{x/v \cdot v} = v \cdot \frac{1}{x \cdot v}
17,638
1/3 + \frac{1}{6} = \frac{1}{2}
-3,632
36 = 2*2*3*3
-7,162
\frac{3}{11} \cdot 6/12 = 3/22
25,624
300 = \dfrac14 \cdot ({49 \choose 2} - \frac{1}{2} \cdot ((-1) + 49)) + \frac{\frac12}{2} \cdot (49 + (-1))
24,923
649352163073816339512038979194880 = \dfrac{48!}{5!^6\cdot (-5\cdot 6 + 48)!}
9,715
12 - y * y*2 \geq 16 + y^2 - y*8 \Rightarrow 0 \geq 4 + 3*y * y - y*8
19,058
-6 + 2\cdot x = 3/2 - x \Rightarrow x = 5/2
13,195
1089 = 11 * 11*3^2
23,300
(-3*x + x^2)/2 = -\binom{x}{1} + \binom{x}{2}
9,249
\cos(a + 2\cdot \pi) = \cos(a)
9,007
L = (L^2 + 1)/L = L + \tfrac{1}{L}
7,970
(x + (-1)) * ((-1) + x)^2 = -1 + x*3 - 3*x^2 + x^3
13,665
(\frac{g\cdot c}{c})^{l + 1} = (g\cdot c/c)^l\cdot \frac{g}{c}\cdot c = \frac{c}{c}\cdot g^l\cdot g\cdot c/c
42,187
1 - -1 = 2 = \left(1 - i\right)\times \left(1 + i\right) = 0
-6,561
\tfrac{1}{z \cdot 2 + 4\left(-1\right)}2 = \frac{2}{2(z + 2(-1))}
22,792
\cos^3\left(x\right) = (1 - \sin^2(x))\cdot \cos(x)
-7,783
(40 + 80\cdot i - 20\cdot i + 40)/20 = \dfrac{1}{20}\cdot (80 + 60\cdot i) = 4 + 3\cdot i