id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
976 | (a + b)^2 = a^2 + 2 a b + b b |
6,551 | 34 + 500 + 334 + 200 + 167\cdot (-1) + 100\cdot (-1) + 67\cdot (-1) = 734 |
9,557 | a_1 \cdot (2/9)^{1 + (-1)} = a_1 |
2,823 | 1/(x*5) = \tfrac{1}{5*x} |
9,242 | \frac{-\dfrac{1}{t}\cdot 3 + 1}{2 + \frac{1}{t}} = \frac{1}{1 + 2\cdot t}\cdot (3\cdot (-1) + t) |
-1,164 | -\frac{1}{56}*21 = ((-21)*\frac17)/(56*\frac{1}{7}) = -3/8 |
15,312 | \dfrac{1}{25}3 = 3/50 + 3/50 |
5,911 | a^2 - 4 a + 5 \left(-1\right) = (a + 5 (-1)) (a + 1) = 0\Longrightarrow -1 = a, 5 |
10,559 | v \times 2^{v + 1} + 1 = v \times 2^{1 + v} + 1 |
41,830 | ( -2, 1, 1)*( 1, 1, 1) = -2 + 1 + 1 = 0 |
20,181 | (2 + n)^2 - n * n = 4*(n + 1) |
2,412 | 396396 = 11^2 \cdot 3^2 \cdot 2^2 \cdot 7 \cdot 13 |
15,977 | y^2 + y + 1 = \frac{1}{(-1) + y}*(\left(-1\right) + y^3) |
12,182 | -(l_1 + (-1)) + l_2 - l_1 = l_2 - l_1 \cdot 2 + 1 |
2,172 | \cos{2} \lt 1 - \frac{1}{2!}*2^2 + \frac{1}{4!}*2^4 = -1/3 \lt 0 |
4,195 | \overline{e^{m\cdot z + i\cdot r}} = \overline{e^{m\cdot z}\cdot e^{i\cdot r}} = e^{m\cdot z}\cdot e^{-i\cdot r} = e^{m\cdot z - i\cdot r} |
18,915 | 10/32 = \dfrac{9}{32} + \frac{1/2}{4} \cdot 1/4 |
29,856 | V - 1/2 - -1/2 + Y = -Y + V |
4,470 | 7(-1) + 6 \cdot 7 + 6(-1) = 29 |
5,929 | (y + 2)*(2*(-1) + y) = y^2 + 4*(-1) |
4,481 | -3(x + 3)^{1/2} + (x + 3)^{3/2} = (3 + x)^{1/2} x |
29,968 | 117 = (11 - f)*\left(11 + f\right) = 121 - f^2 |
3,365 | \left(5 \cdot \left(-1\right) + d\right) \cdot z + (z^2 - 4 \cdot z + 1) \cdot (z + \left(-1\right)) = (-1) + z^3 - 5 \cdot z^2 + d \cdot z |
7,894 | b_x = b_x \cdot 2 |
13,715 | ( B \cdot B^t \cdot x, w) = \left( B^t \cdot x, B^t \cdot w\right) = ( x, B \cdot B^t \cdot w) |
-19,348 | \dfrac{5 / 6}{2 \cdot 1/9}1 = \frac{9}{2} \cdot 5/6 |
16,062 | 10^{0.1*t} = 10^{t*0.05*2} |
2,036 | \frac{\partial}{\partial z_2} (z_2 z_1 \cdot 8) = 8\frac{\partial}{\partial z_2} z_2 z_1 + 8z_2 \frac{\partial}{\partial z_2} z_1 |
9,112 | \frac{1}{2\pi}c = \frac{1}{2}c \pi = \frac{c}{2}\pi |
36,447 | f \cdot e = e \cdot f |
2,115 | y/z = y/z |
15,569 | \frac23\cdot \tfrac{1}{3}\cdot 2 = 2\cdot 2/\left(3\cdot 3\right) = 4/9 |
-2,005 | \pi/2 = \frac{\pi}{12} + \pi \cdot 5/12 |
19,105 | 2^{2 \cdot n} = 0 + 2^{2 \cdot n} |
23,704 | z^i = e^{i*\ln(z)} = \cos(\ln(z)) + i*\sin\left(\ln\left(z\right)\right) |
2,710 | fhe = ef h |
-4,430 | -\frac{2}{4 + x} - \frac{1}{x + (-1)} = \frac{-x\cdot 3 + 2\cdot (-1)}{4\cdot (-1) + x^2 + 3\cdot x} |
5,493 | \frac{1}{7} \cdot (64 + 433) = 71 |
4,896 | r \cdot r/4 - 1/8 = r^2/4 - \frac{2}{16} |
4,270 | \frac{24}{8} = \frac{12}{4} = \frac{6}{2} = \frac{3}{1} = 3 |
-19,460 | 7*1/5/(\dfrac{1}{9}*8) = \dfrac{9}{8}*\frac75 |
30,408 | \left((1 + (-1))^2 + 1\right)*1 * 1 = 1 * 1 |
13,549 | 3\cdot x = k \implies \frac{k}{3}\cdot k = x^2\cdot 3 |
-3,739 | q \cdot 8 = 8 \cdot q |
6,530 | g\cdot b^j = b^j\cdot g |
-1,253 | \frac{54}{56} = 54\cdot 1/2/(56\cdot 1/2) = \frac{27}{28} |
22,522 | hG = Gh |
-23,598 | 2/7 \cdot 2/5 = 4/35 |
12,377 | c \cdot c^2 \cdot d^3 = (c \cdot d)^3 |
6,331 | (z - \sqrt{2}) (\sqrt{2} + z) = 2 (-1) + z^2 |
820 | 2^{1/2} + (-1) = \tan{\pi/8} |
5,457 | s^2 + 2\cdot \left(-1\right) - 2\cdot s + 3 = s^2 - 2\cdot s + 1 = (s + (-1))^2 |
7,133 | \dfrac{524160}{5 \cdot 3 \cdot 2 \cdot 4} \cdot 1 = \binom{16}{5} |
11,387 | 35/768\times \frac{4!}{2!\times 2!} = \dfrac{1}{768}\times 210 |
11,395 | z + z \cdot \vartheta = z \cdot (1 + \vartheta) |
35,581 | \alpha + 1 + \alpha + \left(-1\right) = 2\times \alpha = -\alpha |
-5,679 | \dfrac{6*\left(-1\right) + 3*m}{96 + 3*m^2 - 36*m} = \frac{1}{3*m^2 - 36*m + 96}*(6*(-1) + m*6 + 24*(-1) - m*3 + 24) |
-9,640 | -\dfrac{1}{25}\cdot 20 = -\frac45 |
32,281 | D^{\phi} \cdot x_1^{\phi} = (D \cdot x_1)^{\phi} = \left(x_1 \cdot D\right)^{\phi} = x_1^{\phi} \cdot D^{\phi} |
700 | a^{-x} = (e^{\ln(a)})^{-x} = e^{-x \cdot \ln(a)} |
12,000 | 1 = x \cdot c \Rightarrow \frac1c = x |
20,252 | 10^6 = 1000 \cdot 1000 |
-20,735 | \frac{1}{-12} (-y \cdot 14 + 12 (-1)) = (-y \cdot 7 + 6 \left(-1\right))/(-6) \cdot 2/2 |
-4,834 | 10^9\cdot 57.6 = 57.6\cdot 10^{4 + 5} |
14,835 | \dfrac{a^{1/3}}{a} = a^{\dfrac{1}{3} + (-1)} = a^{-2/3} = \frac{1}{a^{\dfrac23}} = \frac{1}{a^{2/3}} |
-3,607 | z\cdot 11/8 = \dfrac{11}{8}\cdot z |
-4,124 | 40/96 \cdot \tfrac{1}{z^3} \cdot z^2 \cdot z = \frac{z^3 \cdot 40}{z^3 \cdot 96} |
-6,131 | \dfrac{3}{2\cdot (5\cdot \left(-1\right) + k)} = \frac{1}{10\cdot (-1) + 2\cdot k}\cdot 3 |
8,916 | 5 + \cos(x) = 14.5 \Rightarrow \cos(x) = 9.5 |
-20,483 | \tfrac{1}{48 + 8\cdot r}\cdot (24\cdot (-1) + r\cdot 8) = 8/8\cdot \frac{1}{6 + r}\cdot \left(3\cdot (-1) + r\right) |
34,405 | 39^5 + 80^5 + 123^5 = 125539 * 125539*2 |
31,857 | \left(-1\right) + x^{12} = ((-1) + x^6)\cdot (x^6 + 1) |
-5,329 | 1.82\cdot 10 = \frac{1.82}{10^5}\cdot 10 = 1.82/10000 |
39,025 | i = -i \Rightarrow i = 0 |
-2,002 | \pi*5/4 = \pi*11/12 + \pi/3 |
16,108 | \frac{ln}{xk} = \frac{n*1/x}{k*1/l}1 |
35,499 | -1/2 = 1 + 1 + 1 + 1 + ... |
-23,681 | \dfrac{1}{56}\cdot 15 = 5/7\cdot \frac38 |
-3,957 | \frac{1}{n^3} \cdot n^2 = \frac{n \cdot n}{n \cdot n \cdot n} = \frac{1}{n} |
16,295 | \frac{1}{(n - k)! \cdot k!} \cdot n! = {n \choose k} |
-30,567 | \frac{1}{t + 3 \left(-1\right)} (t t + 5 t + 24 \left(-1\right)) = \frac{1}{t + 3 (-1)} (t + 8) \left(t + 3 (-1)\right) = t + 8 |
3,081 | (1 + k) \cdot (1 + k) \cdot (2 + k) = (k^2 + 3 \cdot k + 2) \cdot (k + 1) |
7,012 | \frac{1}{x/v \cdot v} = v \cdot \frac{1}{x \cdot v} |
17,638 | 1/3 + \frac{1}{6} = \frac{1}{2} |
-3,632 | 36 = 2*2*3*3 |
-7,162 | \frac{3}{11} \cdot 6/12 = 3/22 |
25,624 | 300 = \dfrac14 \cdot ({49 \choose 2} - \frac{1}{2} \cdot ((-1) + 49)) + \frac{\frac12}{2} \cdot (49 + (-1)) |
24,923 | 649352163073816339512038979194880 = \dfrac{48!}{5!^6\cdot (-5\cdot 6 + 48)!} |
9,715 | 12 - y * y*2 \geq 16 + y^2 - y*8 \Rightarrow 0 \geq 4 + 3*y * y - y*8 |
19,058 | -6 + 2\cdot x = 3/2 - x \Rightarrow x = 5/2 |
13,195 | 1089 = 11 * 11*3^2 |
23,300 | (-3*x + x^2)/2 = -\binom{x}{1} + \binom{x}{2} |
9,249 | \cos(a + 2\cdot \pi) = \cos(a) |
9,007 | L = (L^2 + 1)/L = L + \tfrac{1}{L} |
7,970 | (x + (-1)) * ((-1) + x)^2 = -1 + x*3 - 3*x^2 + x^3 |
13,665 | (\frac{g\cdot c}{c})^{l + 1} = (g\cdot c/c)^l\cdot \frac{g}{c}\cdot c = \frac{c}{c}\cdot g^l\cdot g\cdot c/c |
42,187 | 1 - -1 = 2 = \left(1 - i\right)\times \left(1 + i\right) = 0 |
-6,561 | \tfrac{1}{z \cdot 2 + 4\left(-1\right)}2 = \frac{2}{2(z + 2(-1))} |
22,792 | \cos^3\left(x\right) = (1 - \sin^2(x))\cdot \cos(x) |
-7,783 | (40 + 80\cdot i - 20\cdot i + 40)/20 = \dfrac{1}{20}\cdot (80 + 60\cdot i) = 4 + 3\cdot i |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.