id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
-4,433 | \frac{-x + 5}{x^2 + x\cdot 8 + 15} = \frac{4}{x + 3} - \frac{5}{x + 5} |
5,504 | \tfrac{4*I + 3}{7*I + 5*\left(-1\right)} = \frac{1}{-5/I + 7}*\left(4 + \frac3I\right) |
759 | {n \choose j} \cdot j = \frac{1}{(j + (-1))! \cdot (n - j)!} \cdot n! = n \cdot {n + (-1) \choose j + (-1)} |
4,970 | z \cdot z\cdot 2 + 5\cdot z\cdot y + 2\cdot y \cdot y = (2\cdot z + y)\cdot (z + 2\cdot y) |
13,018 | 2*x * x - x + 3*(-1) = \left(x + 1\right)*2*(x + 3*(-1)) = 2*(x + 1)*(x + 3*\left(-1\right)) |
44,453 | 1 + 3 \times 5 = 16 |
-15,036 | \tfrac{1}{\frac{h^5}{t^{20}}\times t^4} = \tfrac{1}{t^4\times \frac{1}{t^{20}\times \frac{1}{h^5}}} |
22,679 | \frac{1}{6}\cdot 10 + \frac16\cdot 9 + 4/6\cdot 7 = \dfrac{47}{6} < 8 |
7,982 | (1 + 5^{1 / 2})/2 = 1/2 + \frac{5^{\frac{1}{2}}}{2} |
19,339 | 2*\frac{1}{6}/2 = \frac16 |
22,397 | \frac13 + 2/3\cdot (\dfrac{2}{3}\cdot 2 + \frac{1}{3}\cdot 3) = 17/9 |
34,085 | 2 (-1) + 2 \cdot 2 + 1 = 3 |
15,102 | (w * w * w)^3 = w^9 |
22,163 | 0 = 3 + 6 \cdot z \Rightarrow z = -1/2 |
-1,135 | \dfrac{56}{24} = 56\cdot 1/8/(24\cdot 1/8) = 7/3 |
31,403 | -10 + 2\cdot 6 = 2 |
522 | 5 - 0 \cdot 3 + 9/3 = 5 + 0\left(-1\right) + 9/3 = 5 + 0(-1) + 3 = 5 + 3 = 8 |
-24,681 | -30\cdot i + 52\cdot (-30\cdot i) = -30\cdot i + 52\cdot (-30\cdot i) = 52\cdot \left(-30\cdot i\cdot (-30\cdot i)\right) = 52\cdot (-60\cdot i) |
-8,063 | \dfrac12 \cdot (7 + i - 7 \cdot i + 1) = \frac{1}{2} \cdot (8 - 6 \cdot i) = 4 - 3 \cdot i |
22,403 | |2 \left(-1\right) + z| |z + (-1)| = |z^2 - 3 z + 2| |
23,995 | \int_f^b k\,\mathrm{d}z = \int\limits_f^b k\,\mathrm{d}z |
22,446 | c^2\cdot d^2 = (c\cdot d)^2 |
-7,077 | \frac{3}{13} \cdot 4/14 = 6/91 |
25,978 | (-1)^n\cdot {-2 \choose n} = {n + 1 \choose n} = {n + 1 \choose 1} = n + 1 |
-1,119 | -\dfrac16\times 5/6 = (\left(-1\right)\times 1/6)/(6\times 1/5) |
11,226 | (x + y)^2 = x^2 + y\cdot x\cdot 2 + y \cdot y |
-22,701 | 5\cdot 11/(9\cdot 11) = \dfrac{1}{99}55 |
28,673 | 17296 = \frac{103776}{3 \cdot 2} 1 |
-3,147 | 13^{1/2} \cdot \left(1 + 3\right) = 13^{1/2} \cdot 4 |
-2,330 | 2/15 = 3/15 - 1/15 |
15,030 | 7/33 = \dfrac{105}{495} |
20,244 | -2\cdot \sin^2{c} + 1 = \cos{c\cdot 2} |
4,854 | \frac{2}{1 + l} = \frac{l!}{2^l} \tfrac{2^{l + 1}}{\left(l + 1\right)!} |
23,532 | 2 + 2*(m + (-1)) = 2*m |
35,995 | 2 \cdot \left(y^2 + y\right) \cdot \left(y^2 + y\right) - 2 \cdot y^4 - y^2 \cdot 2 = 4 \cdot y^3 |
23,721 | 64\cdot t^2 + 16\cdot t + 1 = (\frac{1}{8} + t)^2\cdot 64 |
-23,245 | \dfrac{3}{7} \cdot \dfrac{4}{9} = \dfrac{4}{21} |
-12,223 | 2/5 = \dfrac{1}{6 \cdot \pi} \cdot s \cdot 6 \cdot \pi = s |
29,506 | \left(1 + n\right) ((-1) + n) n = -n + n^3 |
3,388 | s + E = E + D = 0, D + s = 1 \Rightarrow -E = D = s = \frac12 |
25,736 | \frac{1}{x^9 \cdot z^9} \cdot (x^9 + z^9) = \frac{1}{x^9} + \frac{1}{z^9} |
31,135 | 0.5999999*\ldots = 5.4/9 = 0.6 |
13,350 | 1 - 126/495 = 1 - 42/165 = \frac{1}{165}\cdot 123 = 0.7454545\cdot \dotsm |
-6,694 | \frac{3}{10} + \dfrac{9}{100} = \frac{1}{100}9 + 30/100 |
6,903 | \frac{n + n^2}{n^2 + 1} = 1 + \frac{n + (-1)}{n * n + 1} |
35,618 | d\cdot x + b\cdot y = x\cdot d + b\cdot y |
1,360 | \frac{r}{2}\cdot h\cdot 2 = h\cdot r |
34,028 | t^2 + (-1) = (t + (-1)) (1 + t) |
16,262 | z\cdot s = a \Rightarrow \bar{a} = s\cdot \bar{z} |
-13,922 | \frac{42}{8 + 6} = \dfrac{1}{14}\cdot 42 = 42/14 = 3 |
7,637 | n_2\times n_1\times \tfrac{1}{n_2}/(n_1) = 1/(n_2)\times n_1\times n_2/(n_1) |
26,547 | \sin(x) = \sin^2(x)/\sin(x) = \sin\left(x\right) |
856 | d^6 = h d^4 h \Rightarrow d^4 = h d^6 h = d^9 |
40,662 | \frac{5}{8} = \frac58 |
22,410 | \dfrac{\cos{x}}{-1} - \int 0/1 \times \cos{x}\,\mathrm{d}x = \int \sin{x}\,\mathrm{d}x |
-1,591 | \tfrac13 \cdot 4 \cdot \pi = \pi \cdot 2 - \pi \cdot 2/3 |
9,401 | f_2^2\cdot f_1^2 + \left(-1\right) = \left(1 + f_2\cdot f_1\right)\cdot ((-1) + f_2\cdot f_1) |
32,541 | 5/8 = 1/2 + \frac14 - \frac18 |
13,234 | \frac{8}{3\cdot 2}\cdot 9\cdot 10 = 120 |
5,427 | \left(x + 1\right)! + (x + 1)! \cdot (x + 1) = \left(x + 1\right)! \cdot (1 + x + 1) = \left(x + 2\right)! |
9,680 | \frac{1}{17^2} \cdot 48^2 \cdot \left(34^2 - x^2\right) = (95 - x) \cdot (95 - x) = 95^2 - 190 \cdot x + x^2 |
-20,663 | \frac{8}{3} \cdot 6/6 = 48/18 |
-20,453 | (-n \cdot 70 + 56 \cdot (-1))/\left(-70\right) = \frac{7}{7} \cdot (-10 \cdot n + 8 \cdot (-1))/(-10) |
14,307 | -\lambda = \frac{T'}{T} \Rightarrow T\lambda + T' = 0 |
-23,046 | -\dfrac52 = 5(-1/2) |
25,044 | \frac{z \cdot z}{-z + z^2} + \frac{1}{-z + z^2} = \frac{1 + z^2}{z^2 - z} |
-25,130 | \frac{\omega \cdot 36 + \omega \cdot \omega \cdot 75}{2 \cdot \sqrt{5 \cdot \omega + 3}} = \frac{d}{d\omega} (3 \cdot \sqrt{3 + 5 \cdot \omega} \cdot \omega^2) |
1,443 | \frac1d \cdot \left(c + d\right) = \frac{c}{d} + 1 |
31,556 | 0.234375 = 1 - 7/8*\frac{7}{8} |
-10,540 | -\frac{1}{16*t^3}*20 = -\dfrac{1}{t^3*4}*5*\frac14*4 |
25,437 | G*2890 = G*289*10 |
31,193 | g \cdot g - c^2 = (-c + g) \cdot (c + g) |
21,389 | 2*5^2 - 8*5 + 9(-1) = 1 |
13,181 | y^{\frac{1}{2}}/y = y^{\dfrac{1}{2} + (-1)} = y^{-1/2} = \frac{1}{y^{1/2}} |
98 | \tfrac{1}{z/2 + 1}*(1 + \left(-1\right) - z/2) = -1^{-1} + \frac{1}{1 + \frac{z}{2}} |
1,239 | \frac{1}{100}\cdot 19 = 1/100 + \frac{9}{100} + 9/100 |
8,592 | {6 \choose 2}\cdot 4! = 6!/2! |
22,640 | \cos(|z\times y|) = \cos{-z\times y} = \cos{z\times y} |
-12,175 | \dfrac{9}{20} = \dfrac{q}{12 \cdot \pi} \cdot 12 \cdot \pi = q |
26,217 | 80\cdot 800 = 800/1\cdot \frac{800}{10} |
-11,737 | (\frac{1}{2})^2 = \frac{1}{4} |
8,929 | \frac{1}{B*Y} = \frac{1}{B*Y} |
-22,219 | a^2 - a + 30 \cdot (-1) = (6 \cdot (-1) + a) \cdot (5 + a) |
10,276 | \frac{1}{cac^2 \cdot \frac{1}{a^2 c^6}} = c^6 a^2 \frac{1/c}{c^2}\tfrac1a |
19,899 | HH A = HHA |
40,115 | 3! = \frac{4!}{4} |
11,221 | \left|{x*M}\right| = \left|{x*M}\right| |
28,667 | x = k + (-1) \implies x + 1 = k |
17,433 | \omega^x + \omega^x*(a_x + \left(-1\right)) = a_x*\omega^x |
19,129 | \sin(\cos{y})*3 \sin{y} = 3\sin(\cos{y}) \sin{y} |
21,438 | \dfrac{13}{4} \cdot 1/51 = \frac{1}{204} \cdot 13 |
502 | G\cdot 4 = 1 \implies \frac{1}{4} = G |
15,499 | \left(-1\right) + c^n = (\left(-1\right) + c) \cdot (c^{\left(-1\right) + n} + c^{2 \cdot (-1) + n} + \dotsm + c + 1) |
364 | (r + 2 \cdot r) \cdot \cot(\pi/4) = r \cdot 3 |
-5,205 | 10^1*58.8 = 10^{2 - 1}*58.8 |
-7,465 | \tfrac92 = 27/6 |
12,189 | (-5)^2 + (-3)^2 + 1 * 1 = 35 = 5*((-5)*(-3) - 5 - 3) |
51,819 | 12 \cdot 13 \cdot 14 \cdot 15 = 32760 |
24,517 | 0 + x + 0 \cdot \dots = x |
-14,116 | \tfrac{18}{6 + 4 \cdot (-1)} = 18/2 = 18/2 = 9 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.