id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
-1,669 | -π\frac{1}{4}3 = π\dfrac{5}{6} - 19/12 π |
27,072 | \cos{y}*2 + 2\left(-1\right) = 1 - \cos^2{y}\Longrightarrow \cos^2{y} + 2\cos{y} + 3(-1) = 0 |
20,053 | \lim_{n \to \infty}(2 + 10/n) = \lim_{n \to \infty} (n\cdot 2 + 10)/n |
18,854 | \frac{1/x * 1/x + 1}{-(\frac1x)^2 + 1} = \frac{x^2 + 1}{(-1) + x * x} |
29,880 | (3 + y)*(2*y + 1) = y * y*2 + y*7 + 3 |
-21,879 | \frac16 + 8/12 = 1*2/\left(6*2\right) + 8/\left(12\right) = \frac{2}{12} + \frac{8}{12} = \left(2 + 8\right)/12 = 10/12 |
-4,701 | \frac{1}{6 + y^2 + 5\cdot y}\cdot \left(-6\cdot y + 16\cdot (-1)\right) = -\frac{2}{y + 3} - \frac{4}{2 + y} |
26,729 | 1 + (p + 1) \cdot ((-1) + p) = p^2 |
-18,464 | 60/45 = \dfrac{1}{3} 4 |
-13,726 | \frac{1}{5 + (-1)} \cdot 16 = \frac{16}{4} = \frac14 \cdot 16 = 4 |
-2,699 | \sqrt{3}\cdot 3 = (5 + 2 + 4\cdot \left(-1\right))\cdot \sqrt{3} |
-7,735 | \frac{1}{34}(10 + 130 i + 6i + 78 (-1)) = \tfrac{1}{34}(-68 + 136 i) = -2 + 4i |
1,184 | \gamma = \frac{\gamma}{π}\cdot π |
24,994 | h^2 - p^2 = (h - p) \cdot \left(p + h\right) |
-9,305 | 66y^3 - 55y^2 = (2\cdot3\cdot11 \cdot y \cdot y \cdot y) - (5\cdot11 \cdot y \cdot y) |
12,881 | \sin(\pi \cdot l + x) = \sin(\pi \cdot l) \cdot \cos(x) + \cos(\pi \cdot l) \cdot \sin\left(x\right) = (-1)^l \cdot \sin(x) |
-4,153 | \frac{z^5}{z^3} = \tfrac{z\cdot z\cdot z\cdot z\cdot z}{z\cdot z\cdot z} = z \cdot z |
28,682 | \lim_{z \to 0^+} \sin{\dfrac1z} = \lim_{z \to \infty} \sin{z} |
14,951 | (-99)^2 + (-100) \cdot (-100) + (-101) \cdot (-101) = 101^2 + 99 \cdot 99 + 100^2 |
4,811 | -1/4 + x^2 = (x - 1/2) (x + \tfrac{1}{2}) |
35,696 | ((-1) + y)\cdot (y \cdot y + y + 1) = (-1) + y^3 |
21,458 | 1/5!/2 = 1/240 |
18,481 | \frac{1^2 + 1 + 2 \cdot (-1)}{2 + 3 - 2 \cdot 1^2} = \frac13 \cdot 0 = 0 \leq 0 |
-20,418 | -\frac{18}{45} = -2/5*\frac{9}{9} |
1,448 | \frac32\cdot x = \vartheta rightarrow x = 2/3\cdot \vartheta |
19,673 | 1 + 3 + 5 + \dotsm + x \cdot 2 + (-1) = x^2 |
25,622 | (A^H)^2 = A^H \cdot A^H = (A^2)^H = A^H |
-22,945 | \dfrac{5*5}{5*6} = 25/30 |
253 | \sin{1/12} = \sin(\frac{1}{3} - 1/4) |
2,135 | z^2\cdot 2 + 2 z + 2 = 2 z z + 2 z + 2 |
338 | x = \tfrac{2x}{2} = (2x + 1)/2 |
31,693 | 987654321 - 8*123456789 = \frac{1}{9^2}*(1 + 8*\left(10^2 + 9*(-1)\right)) = 9 |
13,050 | 2! = 3!/3 = 3 \times 2/3 = 2 |
6,816 | {n \choose k}\cdot k = n\cdot {\left(-1\right) + n \choose k + (-1)} |
25,998 | 2 + \left(x + \left(-1\right)\right)^4 + (x + \left(-1\right))^2*3 = (x + \left(-1\right))^4 + x^2*3 - x*6 + 5 |
9,330 | (\sqrt{a}*\sqrt{b})^2 = (\sqrt{b})^2*\sqrt{a} * \sqrt{a} |
1,624 | 1 + 9\cdot z + z^2\cdot 28 + 36\cdot z \cdot z \cdot z + 16\cdot z^4 = \left(1 + 2\cdot z\right)\cdot (1 + 4\cdot z)\cdot (z + 1)\cdot \left(1 + z\cdot 2\right) |
-20,382 | \left(4 + 28 \cdot q\right)/(-12) = \frac{1}{-3} \cdot (7 \cdot q + 1) \cdot 4/4 |
-10,585 | -\dfrac{7}{3\cdot y^2}\cdot \frac{3}{3} = -\frac{21}{y^2\cdot 9} |
26,842 | 2 - \dfrac{2}{1 + l} = \frac{l\cdot 2}{1 + l} |
27,626 | \int_{-1}^3 e\,\text{d}j = \int\limits_{-5}^{-1} e\,\text{d}j |
11,036 | (1 + z)^{1/2} = \left((1 + z)^1\right)^{\frac{1}{2}} |
-30,561 | \dfrac{96}{48} = 48/24 = \dfrac{1}{12} \cdot 24 = 2 |
-22,907 | \frac{15}{25} = \dfrac{3\cdot 5}{5\cdot 5} |
14,330 | 45 (-1) + 10^{k + 2} + 3.1^{k + 1} + 50 = 10^{k + 1 + 1} + 3.1^{k + 1} + 5 |
-30,784 | x*40 + 70 (-1) = \left(7(-1) + x*4\right)*10 |
36,677 | yB = B = By |
-1,456 | \frac{(-2) \cdot 1/7}{\frac13 \cdot \left(-8\right)} = -2/7 \cdot (-3/8) |
145 | (2 \cdot 2 + 1^2) \cdot 2 = 10 |
3,977 | \frac{1 - y^8}{-y^2 + 1} = y^6 + 1 + y^2 + y^4 |
-5,964 | \frac33 \cdot \frac{1}{(s + 4 \cdot (-1)) \cdot (s + 9 \cdot (-1))} \cdot 3 = \frac{9}{(9 \cdot (-1) + s) \cdot \left(4 \cdot \left(-1\right) + s\right) \cdot 3} |
-4,514 | \tfrac{1}{3 + x^2 - 4x}(3x + 11 (-1)) = \tfrac{4}{x + (-1)} - \dfrac{1}{3(-1) + x} |
23,545 | 1/2 + 1 - \tfrac{1}{1/2 + 1} = 5/6 > \frac12 |
31,494 | 26460 = 7^2 \cdot 2^2 \cdot 3 3^2 \cdot 5 |
2,348 | \tfrac{1}{X^2} + X^2 = (X + 1/X)^2 + 2 \cdot (-1) |
-8,961 | 94.8\% = \dfrac{94.8}{100} |
36,902 | 0 = 32*(-1) + 32 |
-23,824 | \frac{25}{3 + 2} = \dfrac{25}{5} = \frac{25}{5} = 5 |
5,527 | \frac{1}{x + 3}(\frac{1}{2(-1) + x}40 + x*5 + 15) = 5 + \frac{40}{(x + 3) \left(2(-1) + x\right)} |
-21,024 | -50/20 = -\frac{5}{2}*\dfrac{10}{10} |
-6,429 | \frac{2}{(8 \cdot (-1) + q) \cdot 2} = \dfrac{1}{2 \cdot q + 16 \cdot \left(-1\right)} \cdot 2 |
-19,307 | \dfrac{\dfrac{7}{8}}{1/7}\times 1 = 7/1\times \frac{7}{8} |
2,141 | ( a, b)\times ( c, d) = ( a, b, 0)\times ( c, d, 0) = ( 0, 0, a\times d - b\times c) |
35,306 | 3^2 = 1^3 + 2^3 |
-18,663 | -3 = 9*(y + 4*(-1)) = 9*y + 36*(-1) = 9*y + 36*(-1) |
9,398 | a^T\cdot X\cdot b = (a^T\cdot X\cdot b)^T = b^T\cdot X^T\cdot a |
15,265 | {l \choose \theta} = {l \choose l - \theta} |
24,222 | (x^2)^2 + x^2 = 4\cdot x^2 \Rightarrow 0 = x^4 - x^2\cdot 3 |
-7,018 | \frac{4}{35} = 2/5 \cdot 4/7 \cdot \dfrac36 |
6,859 | (2*(-1) + 1)^2 + (0 + (-1))^2 + (0 + 2*(-1))^2 = 6 |
11,343 | 2\left(-1\right) + z^2 - z = \left(1 + z\right) (2(-1) + z) |
1,314 | N\cdot t_2/(t_1) = N\cdot t_1\cdot t_2/\left(t_1\right)/\left(t_1\right) = N\cdot t_2/\left(t_1\right) |
1,404 | x^3*5 + 20*x^2 - x*195 + 270 = (x + 2*(-1))*(x + 9)*(x + 3*\left(-1\right))*5 |
-25,231 | d/dx \sqrt{x^3} = x \cdot \frac{3}{2} |
5,548 | \cos{X} \cdot \sin{X} \cdot 2 = \sin{2 \cdot X} |
-22,353 | q^2 + q\cdot 14 + 45 = \left(5 + q\right)\cdot (q + 9) |
955 | \frac{1/7}{1/4 \times \frac13} = 12/7 |
13,062 | 8984 = 19^3 + 5 \times 5 \times 5 + 10^3 + 10 \times 10 \times 10 |
1,186 | (2\cdot \frac{1}{3}) \cdot (2\cdot \frac{1}{3}) + (2\cdot \frac23)^2 = \dfrac{20}{9} \gt 2 |
-3,891 | \frac{30\cdot t}{18\cdot t^4}\cdot 1 = \frac{30}{18}\cdot \frac{t}{t^4} |
8,644 | 2 \cdot \cos(0) \cdot \sin(π) = 0 |
5,849 | \frac18 \cdot 5 = \frac{1}{1.6} |
41,569 | 2\cdot \left(3 + 1\right) = 8 |
33,696 | \sqrt{z} + \sqrt{y} = \sqrt{(\sqrt{z} + \sqrt{y}) * (\sqrt{z} + \sqrt{y})} = \sqrt{z + y + 2\sqrt{zy}} |
2,233 | \dfrac{1}{4}(4 - y^2) = 1 - y^2/4 |
9,715 | 12 - 2\cdot z^2 \geq 16 + z^2 - z\cdot 8 \Rightarrow 0 \geq 4 + 3\cdot z^2 - z\cdot 8 |
-14,680 | 534 = 89 + 92 + 91 + 97 + 84 + 81 |
-1,601 | 5/2\times \pi = 13/12\times \pi + \pi\times \frac{17}{12} |
35,311 | \dfrac{1}{A\cdot B} = 1/(B\cdot A) \neq \frac{1}{A\cdot B} |
24,540 | \binom{T + 1}{1 + l} = \binom{T}{l} + \binom{T}{1 + l} |
34,735 | 7 = 5 + 31 + 19*\left(-1\right) + 17*(-1) + 11 + 7*\left(-1\right) + 3 |
13,448 | \frac{1}{1 - 1 - x_\tau} = \frac{1}{x_\tau} |
19,188 | \frac{\text{d}}{\text{d}\delta} \operatorname{atan}(\delta) = \frac{1}{1 + \delta^2} |
16,822 | (\frac{dx}{dt})^2 = -e^x \cdot 4 \Rightarrow \frac{dx}{dt} = 2 \cdot e^{\dfrac12 \cdot x} \cdot i |
-1,615 | -\frac{\pi}{6} + 2 \pi = \pi*11/6 |
32,852 | \frac{\text{d}}{\text{d}z} \sin^{-1}{z} = \frac{1}{(-z^2 + 1)^{1 / 2}} |
24,415 | (1 + i)!*\left(i + 1\right) + (i + 1)! = (i + 1 + 1)*(i + 1)! |
10,854 | \frac{10*8*6*7!}{10!} = 8*6/(8*9) = 2/3 |
33,868 | 0 - x*6 + 9*(q*x + Z) = 3 + q*9 \implies q*9 + 3 = 9*x*q - 6*x + 9*Z |
5,281 | |x + y + 2 \cdot (-1)| = |x + (-1) + y + (-1)| \leq |x + \left(-1\right)| + |y + (-1)| |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.