id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
40,022 | \frac{\dfrac15}{4} = \frac{1}{20} |
4,062 | r*r' - c*b = r*r' - r*b + r*b - c*b = r*(r' - b) + (r - c)*b |
-19,387 | \frac{\frac14 \cdot 3}{\dfrac15 \cdot 2} = \frac12 \cdot 5 \cdot 3/4 |
-26,473 | 8^2 - 2*8 x + x^2 = \left(8 - x\right)^2 |
-12,379 | 200^{1 / 2} = 10\cdot 2^{1 / 2} |
15,198 | \frac12(r_2 + x) = (r_2 + x)/2 |
36,253 | 29 = 11 + 47 + 29 \left(-1\right) |
20,243 | x^2 + 16 \cdot (-1) = \left(x + 4\right) \cdot (x + 4 \cdot \left(-1\right)) |
7,439 | \frac{1}{51}\cdot \frac{51}{52} = \frac{1}{52} |
-22,979 | 100/90 = 2\cdot 50/\left(2\cdot 45\right) = \dfrac{10}{2\cdot 5\cdot 9}\cdot 2\cdot 5 = 10/9 |
3,044 | \frac{\binom{1}{1}\cdot \binom{10}{1}}{\binom{11}{2}}\cdot 1 = \frac{2}{11} |
-4,025 | \frac{15\cdot z^3}{3\cdot z^5} = 15/3\cdot \dfrac{z^3}{z^5} |
20,711 | \sin{2*\xi} = 2*\sin{\xi}*\cos{\xi} |
-7,823 | \left(36 - 54 i + 36 i + 54\right)/18 = \frac{1}{18}(90 - 18 i) = 5 - i |
47,465 | \cos{x} + \left(-1\right) = \sum_{m=0}^\infty (-1)^m x^{2 m}/(2 m)! + \left(-1\right) = \sum_{m=1}^\infty \frac{(-1)^m x^{2 m}}{(2 m)!} |
-15,860 | 7\cdot 5/10 - 5/10\cdot 8 = -\dfrac{1}{10}\cdot 5 |
29,203 | m + 2 \cdot (-1) + 0 \cdot (-1) + 1 = \left(-1\right) + m |
155 | \frac{(-1)\cdot a}{b} = -a/b = a/((-1)\cdot b) |
11,072 | z_n = 2z_n |
24,405 | l! = \left((-1) + l\right)! \cdot l |
-5,663 | \frac{1}{3 \cdot (s + 6 \cdot (-1)) \cdot (s + 2 \cdot \left(-1\right))} \cdot 3 = \frac{1/3 \cdot 3}{(s + 6 \cdot \left(-1\right)) \cdot (s + 2 \cdot \left(-1\right))} |
28,388 | ( c, z, d) = ( 1, 78, 23) \implies 4121*67*1608 = \left( c^3, z * z, d^3\right) |
-20,161 | \tfrac{8*(-1) + 36*r}{r*81 + 18*(-1)} = \frac{1}{9*r + 2*(-1)}*\left(r*9 + 2*(-1)\right)*\frac{4}{9} |
-19,079 | 2/15 = \frac{A_s}{100\cdot π}\cdot 100\cdot π = A_s |
4,562 | 2 * 2 + 0^2 + 0^2 + 0 * 0 = 4 |
11,861 | \frac{52!}{5!} \cdot 1/47! = \frac{52!}{47! \cdot 5!} |
18,320 | (x - \left\lfloor{x}\right\rfloor + \left\lfloor{x}\right\rfloor) \cdot 36 = x \cdot 36 |
-205 | \tfrac{7!}{4!*\left(4*(-1) + 7\right)!} = {7 \choose 4} |
31,621 | 1/(H_2) + \frac{1}{H_1} + 1/B = \frac{1}{H_1\cdot B\cdot H_2}\cdot \left(B\cdot H_2 + B\cdot H_1 + H_2\cdot H_1\right) |
38,515 | 1-0.1=0.9 |
-28,902 | π*1^2*1/4 - \frac{1}{2}*1 = -\frac12 + \frac{1}{4}*π |
32,913 | \epsilon = A \cdot \epsilon + \epsilon - \epsilon \cdot A \Rightarrow \|\epsilon\| \leq \|A \cdot \epsilon\| + \|\epsilon - \epsilon \cdot A\| |
1,006 | x + 3 - 4 \left(x + (-1)\right)^{1/2} = x + (-1) - 4 (x + (-1))^{1/2} + 4 = \left((x + (-1))^{1/2} + 2 (-1)\right)^2 |
-11,526 | i - 2 = 0 + 2\times (-1) + i |
10,285 | B^3 \cdot A \cdot A = A \cdot A \cdot B^3 |
4,382 | 5 + 5 \cdot k = n \Rightarrow 5 \cdot 3 + 5 \cdot \left(k + 2 \cdot \left(-1\right)\right) = n |
52,706 | \left(-1\right)^1 = -1 |
25,683 | 9\left(-1\right) + 6 \cdot 3/2 = 0 |
13,730 | (-1)^{d g} = (-1)^{g d} |
19,361 | \sin{2014 \cdot π/12} = \sin{\frac{11}{6} \cdot π} = -1/2 |
4,949 | 1 - 4*\frac{1}{4*d^2}*\left(-f^2 + d * d\right) = \dfrac{f^2}{d * d} |
10,740 | e\cdot e^{\left(-1\right) + y} = e^y |
20,463 | d/dz \frac{1}{z} = -\tfrac{1}{z^2} |
3,570 | 3^m - 3^{m + 2 \times (-1)} = (9 + \left(-1\right)) \times 3^{m + 2 \times (-1)} |
-2,913 | \sqrt{175} - \sqrt{112} = -\sqrt{16*7} + \sqrt{25*7} |
-30,878 | 9 \cdot \left(-1\right) + 79 = 70 |
31,339 | 442^{260} = 221^3\cdot 8\cdot 442^{257} |
24,148 | 3\cdot 576\cdot \pi = 1728\cdot \pi |
38,448 | \cos(x - \frac12\cdot π) = \sin{x} |
9,768 | \frac{1}{4\cdot 2\cdot 3}\cdot 4 = \frac{1}{3\cdot 1\cdot 2} |
33,771 | 0 = x^2 + 3x = x*\left(x + 3\right) |
-5,925 | \dfrac{2*a}{(2 + a)*(a + 6)}*1 = \frac{2*a}{12 + a^2 + a*8} |
31,936 | \sqrt{2 \cdot π} \cdot x \cdot \sqrt{π \cdot 2} \cdot x = 2 \cdot x^2 \cdot π |
38,855 | 5^{1/2} (\frac{1}{5^{1/2}}\sin(z) + \cos\left(z\right) \frac{2}{5^{1/2}}) = \sin(z) + 2\cos(z) |
-24,671 | 3 + 4 \cdot i - 6 - 10 \cdot i = 3 + 4 \cdot i + 6 \cdot (-1) + 10 \cdot i = 3 + 6 \cdot (-1) + 4 \cdot i + 10 \cdot i = -3 + 14 \cdot i |
31,527 | q*X*x^2*\left(f_b - f_t\right) = (f_b - f_t)*q*X*x^2 |
14,010 | (p + 1 + D)*(p + 1 + D) = p^2 + 2*p + 1 + D = p + p^2 + p + 1 + D = p + D |
38,163 | |z^4 + 5 z^2 - -4| = |z^4 + 5 z^2 + 4| |
-10,419 | \frac{1}{1 + n}\cdot (n + 10\cdot (-1))\cdot \frac{1}{20}\cdot 20 = \frac{1}{20 + n\cdot 20}\cdot \left(n\cdot 20 + 200\cdot (-1)\right) |
6,659 | \frac{\left(4 + (-1)\right)!}{(3 + \left(-1\right))!} = \frac{1}{2!} \cdot 3! = \dfrac12 \cdot 6 = 3 |
14,498 | \frac11 \left(\frac{1}{4} (-2)\right) = -\frac12 |
-1,835 | -\frac34 \pi = \frac{\pi}{6} - \pi \frac{11}{12} |
20,839 | \frac{1}{36} + 2/36 + \dfrac{1}{36}\cdot 3 + \tfrac{1}{36}\cdot 4 = \frac{5}{18} |
12,859 | f^x\cdot f^z = f^{z + x} |
22,619 | 1 + y^2 - 2y = 1 + y^2 - 2y |
-25,870 | \frac{4^8}{4^3} = 4^{8 + 3\cdot (-1)} = 4^5 |
-142 | -10 = -8 + 2\left(-1\right) |
12,494 | 2k = 135 + 25 = 160 \Rightarrow k = 80 |
33,502 | 7 + 4\cdot (-1) = 3 |
21,912 | 0.25 \cdot (\dfrac{d}{1000})^2 \cdot 1000 = \frac{1}{4000} \cdot d^2 |
27,134 | (h + x)^2 = h^2 + x * x + 2*h*x |
15,028 | \frac12\times \left((-a + g) \times (-a + g) + (-x + a)^2 + (x - g)^2\right) = -g\times a + a^2 + x \times x + g \times g - a\times x - g\times x |
-19,094 | 71/90 = \dfrac{A_x}{36\cdot \pi}\cdot 36\cdot \pi = A_x |
14,042 | (k + 1)!*\left(k + 2\right) = \left(2 + k\right)! |
-28,891 | \dfrac{1}{2 + 3 + 4}*4 = \frac49 |
1,676 | m \cdot m \cdot 8 = (2 \cdot m)^2 + (m \cdot 2)^2 |
-6,437 | \frac{1}{50 \cdot (-1) + z \cdot z + z \cdot 5} \cdot 4 = \frac{1}{\left(z + 10\right) \cdot (5 \cdot (-1) + z)} \cdot 4 |
32,143 | n^2 = p\cdot q + m^2 rightarrow p\cdot q = (n + m)\cdot (n - m) |
12,460 | 1 + 3*y^2 + 6*y = 3*(1 + y) * (1 + y) + 2*(-1) |
-5,962 | \tfrac{5}{r \cdot 3 + 27 \cdot (-1)} = \dfrac{5}{3 \cdot (r + 9 \cdot (-1))} |
4,729 | 33*\pi/2 = \pi*17 + ((-1)*\pi)/2 |
-8,034 | \frac{-22 + i \cdot 20}{1 + 5 \cdot i} = \frac{1}{-5 \cdot i + 1} \cdot \left(-i \cdot 5 + 1\right) \cdot \frac{20 \cdot i - 22}{i \cdot 5 + 1} |
6,199 | (-1) + n*2 - n = n + \left(-1\right) |
39,469 | 1 + 1/9007199254740992 + (-1) = \dfrac{1}{9007199254740992} |
-1,196 | \frac{1}{15} \cdot 6 = \frac{6}{15 \cdot \frac13} \cdot 1/3 = \frac{2}{5} |
14,703 | \left(\lim_{x \to c} f\right)^{1/2} = \lim_{x \to c} f^{1/2} |
-23,088 | \tfrac{4}{3} \cdot (-32/9) = -\frac{1}{27} \cdot 128 |
-5,459 | \frac{1}{w^2 + 7 \cdot w + 30 \cdot (-1)} \cdot 4 = \frac{1}{(w + 3 \cdot (-1)) \cdot (10 + w)} \cdot 4 |
-26,535 | 16 - y * y = -y^2 + 4^2 |
19,004 | \dfrac{1}{(-1) + r} \cdot (r^2 + (-1)) = r + 1 |
-10,733 | -\frac{11}{5} = -\dfrac15 \cdot 11 |
8,812 | (n + 1)/2 + \frac12\cdot (n + (-1)) = n |
46,087 | 6 + 14 \cdot 21 = 300 |
-17,776 | 51 = 68 + 17*(-1) |
31,569 | y^c*y^f = y^{f + c} |
15,720 | \max{d,b,h} = \max{d,\max{b,h}} = \max{\max{d, b}, h} |
12,991 | 4\cdot 3 \cdot 3 = 2\cdot 4^2 + 2^2 |
-20,838 | \frac{(-1) + N}{(-1) + N}\cdot (-1/4) = \frac{-N + 1}{N\cdot 4 + 4\cdot (-1)} |
10,902 | 4^n + 3^n = (1 + (\frac34)^n)\cdot 4^n |
39,596 | (g + \left(-1\right))^2 + (c + 1)^2 = g^2 + c^2 + 2 \left(c + 1 - g\right) \leq g g + c c |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.