id
int64
-30,985
55.9k
text
stringlengths
5
437k
40,022
\frac{\dfrac15}{4} = \frac{1}{20}
4,062
r*r' - c*b = r*r' - r*b + r*b - c*b = r*(r' - b) + (r - c)*b
-19,387
\frac{\frac14 \cdot 3}{\dfrac15 \cdot 2} = \frac12 \cdot 5 \cdot 3/4
-26,473
8^2 - 2*8 x + x^2 = \left(8 - x\right)^2
-12,379
200^{1 / 2} = 10\cdot 2^{1 / 2}
15,198
\frac12(r_2 + x) = (r_2 + x)/2
36,253
29 = 11 + 47 + 29 \left(-1\right)
20,243
x^2 + 16 \cdot (-1) = \left(x + 4\right) \cdot (x + 4 \cdot \left(-1\right))
7,439
\frac{1}{51}\cdot \frac{51}{52} = \frac{1}{52}
-22,979
100/90 = 2\cdot 50/\left(2\cdot 45\right) = \dfrac{10}{2\cdot 5\cdot 9}\cdot 2\cdot 5 = 10/9
3,044
\frac{\binom{1}{1}\cdot \binom{10}{1}}{\binom{11}{2}}\cdot 1 = \frac{2}{11}
-4,025
\frac{15\cdot z^3}{3\cdot z^5} = 15/3\cdot \dfrac{z^3}{z^5}
20,711
\sin{2*\xi} = 2*\sin{\xi}*\cos{\xi}
-7,823
\left(36 - 54 i + 36 i + 54\right)/18 = \frac{1}{18}(90 - 18 i) = 5 - i
47,465
\cos{x} + \left(-1\right) = \sum_{m=0}^\infty (-1)^m x^{2 m}/(2 m)! + \left(-1\right) = \sum_{m=1}^\infty \frac{(-1)^m x^{2 m}}{(2 m)!}
-15,860
7\cdot 5/10 - 5/10\cdot 8 = -\dfrac{1}{10}\cdot 5
29,203
m + 2 \cdot (-1) + 0 \cdot (-1) + 1 = \left(-1\right) + m
155
\frac{(-1)\cdot a}{b} = -a/b = a/((-1)\cdot b)
11,072
z_n = 2z_n
24,405
l! = \left((-1) + l\right)! \cdot l
-5,663
\frac{1}{3 \cdot (s + 6 \cdot (-1)) \cdot (s + 2 \cdot \left(-1\right))} \cdot 3 = \frac{1/3 \cdot 3}{(s + 6 \cdot \left(-1\right)) \cdot (s + 2 \cdot \left(-1\right))}
28,388
( c, z, d) = ( 1, 78, 23) \implies 4121*67*1608 = \left( c^3, z * z, d^3\right)
-20,161
\tfrac{8*(-1) + 36*r}{r*81 + 18*(-1)} = \frac{1}{9*r + 2*(-1)}*\left(r*9 + 2*(-1)\right)*\frac{4}{9}
-19,079
2/15 = \frac{A_s}{100\cdot π}\cdot 100\cdot π = A_s
4,562
2 * 2 + 0^2 + 0^2 + 0 * 0 = 4
11,861
\frac{52!}{5!} \cdot 1/47! = \frac{52!}{47! \cdot 5!}
18,320
(x - \left\lfloor{x}\right\rfloor + \left\lfloor{x}\right\rfloor) \cdot 36 = x \cdot 36
-205
\tfrac{7!}{4!*\left(4*(-1) + 7\right)!} = {7 \choose 4}
31,621
1/(H_2) + \frac{1}{H_1} + 1/B = \frac{1}{H_1\cdot B\cdot H_2}\cdot \left(B\cdot H_2 + B\cdot H_1 + H_2\cdot H_1\right)
38,515
1-0.1=0.9
-28,902
π*1^2*1/4 - \frac{1}{2}*1 = -\frac12 + \frac{1}{4}*π
32,913
\epsilon = A \cdot \epsilon + \epsilon - \epsilon \cdot A \Rightarrow \|\epsilon\| \leq \|A \cdot \epsilon\| + \|\epsilon - \epsilon \cdot A\|
1,006
x + 3 - 4 \left(x + (-1)\right)^{1/2} = x + (-1) - 4 (x + (-1))^{1/2} + 4 = \left((x + (-1))^{1/2} + 2 (-1)\right)^2
-11,526
i - 2 = 0 + 2\times (-1) + i
10,285
B^3 \cdot A \cdot A = A \cdot A \cdot B^3
4,382
5 + 5 \cdot k = n \Rightarrow 5 \cdot 3 + 5 \cdot \left(k + 2 \cdot \left(-1\right)\right) = n
52,706
\left(-1\right)^1 = -1
25,683
9\left(-1\right) + 6 \cdot 3/2 = 0
13,730
(-1)^{d g} = (-1)^{g d}
19,361
\sin{2014 \cdot π/12} = \sin{\frac{11}{6} \cdot π} = -1/2
4,949
1 - 4*\frac{1}{4*d^2}*\left(-f^2 + d * d\right) = \dfrac{f^2}{d * d}
10,740
e\cdot e^{\left(-1\right) + y} = e^y
20,463
d/dz \frac{1}{z} = -\tfrac{1}{z^2}
3,570
3^m - 3^{m + 2 \times (-1)} = (9 + \left(-1\right)) \times 3^{m + 2 \times (-1)}
-2,913
\sqrt{175} - \sqrt{112} = -\sqrt{16*7} + \sqrt{25*7}
-30,878
9 \cdot \left(-1\right) + 79 = 70
31,339
442^{260} = 221^3\cdot 8\cdot 442^{257}
24,148
3\cdot 576\cdot \pi = 1728\cdot \pi
38,448
\cos(x - \frac12\cdot π) = \sin{x}
9,768
\frac{1}{4\cdot 2\cdot 3}\cdot 4 = \frac{1}{3\cdot 1\cdot 2}
33,771
0 = x^2 + 3x = x*\left(x + 3\right)
-5,925
\dfrac{2*a}{(2 + a)*(a + 6)}*1 = \frac{2*a}{12 + a^2 + a*8}
31,936
\sqrt{2 \cdot π} \cdot x \cdot \sqrt{π \cdot 2} \cdot x = 2 \cdot x^2 \cdot π
38,855
5^{1/2} (\frac{1}{5^{1/2}}\sin(z) + \cos\left(z\right) \frac{2}{5^{1/2}}) = \sin(z) + 2\cos(z)
-24,671
3 + 4 \cdot i - 6 - 10 \cdot i = 3 + 4 \cdot i + 6 \cdot (-1) + 10 \cdot i = 3 + 6 \cdot (-1) + 4 \cdot i + 10 \cdot i = -3 + 14 \cdot i
31,527
q*X*x^2*\left(f_b - f_t\right) = (f_b - f_t)*q*X*x^2
14,010
(p + 1 + D)*(p + 1 + D) = p^2 + 2*p + 1 + D = p + p^2 + p + 1 + D = p + D
38,163
|z^4 + 5 z^2 - -4| = |z^4 + 5 z^2 + 4|
-10,419
\frac{1}{1 + n}\cdot (n + 10\cdot (-1))\cdot \frac{1}{20}\cdot 20 = \frac{1}{20 + n\cdot 20}\cdot \left(n\cdot 20 + 200\cdot (-1)\right)
6,659
\frac{\left(4 + (-1)\right)!}{(3 + \left(-1\right))!} = \frac{1}{2!} \cdot 3! = \dfrac12 \cdot 6 = 3
14,498
\frac11 \left(\frac{1}{4} (-2)\right) = -\frac12
-1,835
-\frac34 \pi = \frac{\pi}{6} - \pi \frac{11}{12}
20,839
\frac{1}{36} + 2/36 + \dfrac{1}{36}\cdot 3 + \tfrac{1}{36}\cdot 4 = \frac{5}{18}
12,859
f^x\cdot f^z = f^{z + x}
22,619
1 + y^2 - 2y = 1 + y^2 - 2y
-25,870
\frac{4^8}{4^3} = 4^{8 + 3\cdot (-1)} = 4^5
-142
-10 = -8 + 2\left(-1\right)
12,494
2k = 135 + 25 = 160 \Rightarrow k = 80
33,502
7 + 4\cdot (-1) = 3
21,912
0.25 \cdot (\dfrac{d}{1000})^2 \cdot 1000 = \frac{1}{4000} \cdot d^2
27,134
(h + x)^2 = h^2 + x * x + 2*h*x
15,028
\frac12\times \left((-a + g) \times (-a + g) + (-x + a)^2 + (x - g)^2\right) = -g\times a + a^2 + x \times x + g \times g - a\times x - g\times x
-19,094
71/90 = \dfrac{A_x}{36\cdot \pi}\cdot 36\cdot \pi = A_x
14,042
(k + 1)!*\left(k + 2\right) = \left(2 + k\right)!
-28,891
\dfrac{1}{2 + 3 + 4}*4 = \frac49
1,676
m \cdot m \cdot 8 = (2 \cdot m)^2 + (m \cdot 2)^2
-6,437
\frac{1}{50 \cdot (-1) + z \cdot z + z \cdot 5} \cdot 4 = \frac{1}{\left(z + 10\right) \cdot (5 \cdot (-1) + z)} \cdot 4
32,143
n^2 = p\cdot q + m^2 rightarrow p\cdot q = (n + m)\cdot (n - m)
12,460
1 + 3*y^2 + 6*y = 3*(1 + y) * (1 + y) + 2*(-1)
-5,962
\tfrac{5}{r \cdot 3 + 27 \cdot (-1)} = \dfrac{5}{3 \cdot (r + 9 \cdot (-1))}
4,729
33*\pi/2 = \pi*17 + ((-1)*\pi)/2
-8,034
\frac{-22 + i \cdot 20}{1 + 5 \cdot i} = \frac{1}{-5 \cdot i + 1} \cdot \left(-i \cdot 5 + 1\right) \cdot \frac{20 \cdot i - 22}{i \cdot 5 + 1}
6,199
(-1) + n*2 - n = n + \left(-1\right)
39,469
1 + 1/9007199254740992 + (-1) = \dfrac{1}{9007199254740992}
-1,196
\frac{1}{15} \cdot 6 = \frac{6}{15 \cdot \frac13} \cdot 1/3 = \frac{2}{5}
14,703
\left(\lim_{x \to c} f\right)^{1/2} = \lim_{x \to c} f^{1/2}
-23,088
\tfrac{4}{3} \cdot (-32/9) = -\frac{1}{27} \cdot 128
-5,459
\frac{1}{w^2 + 7 \cdot w + 30 \cdot (-1)} \cdot 4 = \frac{1}{(w + 3 \cdot (-1)) \cdot (10 + w)} \cdot 4
-26,535
16 - y * y = -y^2 + 4^2
19,004
\dfrac{1}{(-1) + r} \cdot (r^2 + (-1)) = r + 1
-10,733
-\frac{11}{5} = -\dfrac15 \cdot 11
8,812
(n + 1)/2 + \frac12\cdot (n + (-1)) = n
46,087
6 + 14 \cdot 21 = 300
-17,776
51 = 68 + 17*(-1)
31,569
y^c*y^f = y^{f + c}
15,720
\max{d,b,h} = \max{d,\max{b,h}} = \max{\max{d, b}, h}
12,991
4\cdot 3 \cdot 3 = 2\cdot 4^2 + 2^2
-20,838
\frac{(-1) + N}{(-1) + N}\cdot (-1/4) = \frac{-N + 1}{N\cdot 4 + 4\cdot (-1)}
10,902
4^n + 3^n = (1 + (\frac34)^n)\cdot 4^n
39,596
(g + \left(-1\right))^2 + (c + 1)^2 = g^2 + c^2 + 2 \left(c + 1 - g\right) \leq g g + c c