id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
17,839 | (b^2 + x^2 + x\cdot b)/a\cdot \dots\cdot \dots = \frac{a^2}{x - b} |
10,799 | \frac{1}{t - 2} - \frac{1}{t - 1} = \frac{1}{1 - t} + \frac{(-1)\cdot 1/2}{1 - t/2} |
26,314 | 1/\left(a\cdot (-1)\right) = -\dfrac{1}{a} |
-6,721 | 8/100 + 4/10 = \frac{1}{100}\cdot 40 + 8/100 |
1,900 | (-1) + s \cdot s^2 = \left(s^2 + s + 1\right) ((-1) + s) |
-3,659 | \frac{1}{6x}5 = 5*\tfrac16/x |
7,711 | a = x * x*2 - 5*x + 2*(-1)\Longrightarrow -a + 2*x^2 - x*5 + 2*\left(-1\right) = 0 |
-19,429 | 8*1/3/(9*\frac12) = \frac29*\dfrac83 |
-8,337 | -\frac{1}{-1}\cdot 6 = 6 |
-20,417 | 4/4 \cdot \frac{c \cdot (-6)}{c + 3} = \frac{c \cdot \left(-24\right)}{4 \cdot c + 12} |
23,930 | y = e^\theta \implies y \cdot y = e^{2\cdot \theta} |
24,616 | 48 = 16^2 x\Longrightarrow x = 3/16 |
30,769 | \frac{49 \cdot 49 \cdot 49}{50^6} \cdot 15 \cdot 50 = \dfrac{1}{62500000} \cdot 352947 = 0.005647152 |
17,781 | 4 - \frac{1}{3}\cdot 8 = \dfrac{4}{3} |
-22,964 | \tfrac{36}{120} = \frac{3 \cdot 12}{10 \cdot 12} |
-18,774 | z\cdot 7/7 = z |
26,385 | g\times K = g\times K |
37,519 | A \backslash G = A \cap G^c = G \cup A^c^c |
13,994 | (y + 1)^3 = 1 + y*3 + y^2*3 + y^2 * y |
6,343 | D \cdot B = 0 + D \cdot B |
-2,681 | 11 \sqrt{7} = \sqrt{7}*\left(5 + 4 + 2\right) |
12,343 | 3 = \left(H + x*\sqrt{2}\right)^2 = H^2 + 2*x^2 + 2*H*x*\sqrt{2} |
-2,128 | 23/12\cdot \pi + \pi\cdot 5/12 = \pi\cdot 7/3 |
207 | Z \cdot Z^R = Z \cdot Z^R |
12,907 | \cos{E} = \cot{E}\cdot \sin{E} |
2,604 | x^2 - z^2 = (x - z)*\left(x^1*z^0 + x^0*z^1\right) = \left(x - z\right)*\left(x + z\right) |
10,978 | \frac{1}{j^z} = j^{-z} |
26,019 | \frac{1}{x^n*n}*x^{1 + n}*(1 + n) = x*\frac{1}{n}*(n + 1) |
24,021 | \cos^2(x) = 0.5 + 0.5 \cdot \cos(x \cdot 2) |
1,740 | 2 \cdot k + 1 = \left(1 + k\right)^2 - k \cdot k |
-20,155 | \frac{-3 \cdot x + 4}{-3 \cdot x + 4} \cdot \left(-\dfrac53\right) = \frac{20 \cdot (-1) + 15 \cdot x}{12 - 9 \cdot x} |
-25,802 | 1/3\cdot 5/7 = \dfrac{1}{21}\cdot 5 |
32,399 | 2^6*2^{2 (-1) + l} = 2^{l + 4} |
35,860 | 52*51*50*49*48/5! = \binom{52}{5} |
10,351 | \frac{z^{\frac43}}{z^{1/3}} = z^{\frac{4}{3} - \frac13} = z^{3/3} = z |
1,904 | h_1 + 2^{1/2}*d_1 + h_2 + 2^{1/2}*d_2 = (d_1 + d_2)*2^{1/2} + h_1 + h_2 |
22,772 | \int \cos{x} \cos{x}\,\mathrm{d}x = \int \cos^2{x}\,\mathrm{d}x |
28,828 | 76 = 4 \cdot 15 + 4 \cdot 4 |
55,316 | 11 = 111 \gt 11 |
17,425 | \frac{l^3}{l + 1} = \frac{l}{1 + l} + l^2 - l |
33,566 | \cos(\theta) = \sin(\dfrac{\pi}{2} + \theta) |
15,883 | \sin(P) \sec(P) = \tan(P) |
15,401 | y^3 - a^3 = (-a + y)\cdot (y^2 + a\cdot y + a^2) |
-27,849 | \frac{\text{d}}{\text{d}x} \left(4\tan{x}\right) = 4\frac{\text{d}}{\text{d}x} \tan{x} = 4\sec^2{x} |
37,339 | 3840 = 10*8*6*4*2 |
26,651 | \frac13 - \frac{1}{12} = 1/4 |
17,486 | (n + 1) \cdot n/2 = \binom{n + 1}{2} |
14,933 | W^4 + 0 \cdot W^3 - 10 \cdot W^2 + W + 20 = W^4 - W^2 \cdot 10 + W + 20 |
8,251 | \left(\frac{2}{5} = \frac{1}{7\cdot x - y}\cdot (-y + x\cdot 3) \implies -y\cdot 5 + 15\cdot x = -y\cdot 2 + x\cdot 14\right) \implies x/3 = y |
6,023 | 9 = \frac{1}{2} \cdot 6 \cdot \left(2 + 1\right) |
26,569 | x^3 + x^2\cdot \left(a + 1\right) + (b + a)\cdot x + b = \left(b + x^2 + x\cdot a\right)\cdot (x + 1) |
4,100 | (2*2^{1/2} + 3)^{1/2} = 1 + 2^{1/2} |
31,734 | p - p_m < \epsilon rightarrow p - \epsilon \lt p_m |
-10,445 | \frac{20 + x*4}{2*(-1) + x*2} = 2/2*\frac{2*x + 10}{(-1) + x} |
8,692 | 1 + q + q^2 + \ldots + q^n = \frac{1}{1 - q}\cdot (1 - q^{n + 1}) |
355 | \cos\left(2 \cdot \pi/5\right) = -\dfrac{1}{4} \cdot \left(1 - \sqrt{5}\right) = \tfrac{1}{4} \cdot (\sqrt{5} + \left(-1\right)) |
-2,491 | 8^{1 / 2} + 50^{\dfrac{1}{2}} - 18^{1 / 2} = (4\cdot 2)^{1 / 2} + (25\cdot 2)^{1 / 2} - \left(9\cdot 2\right)^{\tfrac{1}{2}} |
7,646 | 2\cdot z^4 + 2\cdot z^2 + (-1) = (2\cdot z^2 + 1 + \sqrt{3})\cdot (z \cdot z\cdot 2 + 1 - \sqrt{3})/2 |
40,178 | \tfrac{1}{10}\cdot 5! = 12 |
31,621 | \frac1Z + \frac1B + 1/C = \dfrac{1}{Z\cdot B\cdot C}\cdot (Z\cdot B + C\cdot Z + B\cdot C) |
8,665 | \frac{\partial}{\partial x} (w \times x) = w \times \frac{\mathrm{d}x}{\mathrm{d}x} + x \times \frac{\mathrm{d}w}{\mathrm{d}x} |
39,851 | 2^{1/2} * 2^{1/2} = 2 |
47,617 | \binom{2 + 2}{2} = 6 |
12,376 | (y^{\frac13})^2 = y^{\tfrac{2}{3}} |
-553 | e^{17 \cdot \pi \cdot i \cdot 17/12} = (e^{\dfrac{17}{12} \cdot i \cdot \pi})^{17} |
-22,996 | \frac{10*11}{3*11} = 110/33 |
-24,654 | 9/24 = \frac{3\cdot 3}{8\cdot 3} |
24,328 | \left(A \cap X\right) \cup \left(B' \cap C\right) = (A \cup B') \cap (C \cup X) |
21,820 | R^m = \frac{1}{R^{-m}} |
31,439 | \binom{4}{2} = \frac{1}{2!\cdot (4 + 2\cdot (-1))!}\cdot 4! = 6 |
32,906 | 5/3 = 40/24 |
37,677 | 55 = 45*(-1) + 100 |
-5,304 | \tfrac{6.0}{10^6} = \frac{6.0}{10^6} |
-12,104 | \frac{13}{30} = \frac{T}{6 \pi}*6 \pi = T |
-6,345 | \frac{1}{2\cdot (-1) + 2\cdot x} = \frac{1}{((-1) + x)\cdot 2} |
28,001 | 8 = 3^2 + (-1) |
10,608 | (-1) + y^3 = (1 + y * y + y)*\left(y + \left(-1\right)\right) |
22,671 | (x^2)^3 + 64 = (x^2)^3 + 4^3 = (x^2 + 4) \left(x^4 - 4x^2 + 16\right) |
-23,081 | -27/16 \cdot \frac{3}{4} = -\frac{1}{64} \cdot 81 |
-4,026 | \frac13\cdot x^2 = x^2/3 |
-5,002 | 10^2\cdot 15.8 = 15.8\cdot 10^{-1 + 3} |
9,819 | 5 \cdot 4 - 5 \cdot 3 = 5 |
-5,529 | \frac{1}{2n + 14} = \frac{1}{2(n + 7)} |
19,900 | 1 + x^4 + x * x = \left(1 + x^2 - x\right)*(1 + x^2 + x) |
15,194 | \frac{1}{2! \cdot 2!} \cdot 6! = \frac{720}{4} = 180 |
-20,035 | \frac{1}{3 - 2r}(3 - r \cdot 2) (-\dfrac{1}{6}) = \frac{2r + 3(-1)}{-r \cdot 12 + 18} |
2,465 | 1 + y \cdot \log_e\left(a\right) + \dfrac{y^2}{2} \cdot \log_e(a)^2 + \tfrac{y^3}{6} \cdot \log_e\left(a\right)^3 \cdot \dotsm = a^y |
30,458 | 3\cdot 277 = 831 |
9,789 | \left(x + 1\right) \left(1 + x \cdot x\right) (x^4 + 1) \dotsm \cdot (1 + x^{2^m}) = \frac{1}{1 - x}(1 - x^{2^{m + 1}}) |
17,703 | I^p + y^p = z^p\Longrightarrow \left(z^2\right)^p - 4 \cdot (I \cdot y)^p = (-y^p + I^p)^2 |
2,789 | \dfrac{1}{y^2 \cdot 6 + 1 - 5 \cdot y} = \frac{3}{1 - 3 \cdot y} - \frac{2}{-y \cdot 2 + 1} |
23,793 | g\times B\times a\times B = g\times a\times B = a\times B = a\times g\times B = a\times B\times g\times B |
1,119 | 1 - \frac{1}{n + 1} = \dfrac{1}{n + 1} \times n = \dfrac{1}{1 + \frac1n} |
22,306 | u + w = ... = z^2 \Rightarrow z = \sqrt{u + w} |
-30,860 | \frac{x^2}{2 + x} = \frac{x^3 - 2 \cdot x \cdot x}{x \cdot x + 4 \cdot \left(-1\right)} |
21,822 | \frac{1}{1 + \tan(2\cdot x)}\cdot \tan\left(x\cdot 2\right) = 1 - \tan(x) + \tan^2(x) - \tan^3\left(x\right) + \ldots |
-13,792 | 1 + \dfrac18 56 = 1 + 7 = 8 |
-5,309 | 10^6*0.45 = 10^{5 - -1}*0.45 |
-8,457 | -2 = \left(-1\right)*2 |
1,121 | 36 (-1) + x x x - x^2 \cdot 10 + 33 x = (3 \left(-1\right) + x)^2 \left(x + 4 \left(-1\right)\right) |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.