id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
4,487 | \left(\int \tfrac{x}{x + 2/\pi}\,\mathrm{d}x\right)/\pi = \int \frac{1}{x \pi + 2} x\,\mathrm{d}x |
20,270 | \frac{1}{2} \cdot (\left(-1\right) + 11) = 5 |
17,843 | \frac{9}{9^2 + 11\cdot (-1)}\cdot \frac89 = 4/35 \approx 0.114285714285714 |
19,084 | -x x + h^2 = (h - x) \left(h + x\right) |
5,714 | z_2 = i \cdot z_1 rightarrow \frac{z_2}{i} = z_1 |
9,502 | \left(1 - \frac32\right)^2 = (2 - 3/2)^2 |
8,598 | a^3 = a \cdot a \cdot a |
7,257 | -\dfrac{1}{100} \cdot 30 + \frac{10}{100} + 60/100 \cdot 0 = -0.2 |
54,289 | 197 = 49 + 148 |
2,086 | 35^{1/2} = (5 \cdot 5 + 3^2 + (-1)^2)^{1/2} |
14,409 | c \cdot h^n = c \cdot h^n |
-3,043 | \sqrt{25} \sqrt{11} + \sqrt{11} = \sqrt{11}*5 + \sqrt{11} |
1,066 | x\cdot a^n/x = \left(x\cdot a/x\right)^n |
23,441 | \dfrac{-x^{1 + n} + 1}{-x + 1} = 1 + x + x^2 + \cdots + x^n |
17,559 | 2^{4 + n} = 2^{n + 3} + 2^{n + 2} + 2^{1 + n} + 2^n + 2^n |
4,243 | y^b*y^a = y^{a + b} |
-20,591 | (25 + n \cdot 5)/45 = \frac19(n + 5) \cdot 5/5 |
-30,548 | -1000/\left(-200\right) = -200/(-40) = -\frac{40}{-8} = 5 |
-4,381 | \frac{22}{1\cdot 22}\cdot 2\cdot \tfrac{1}{k^2}\cdot k^5 = \frac{1}{k \cdot k}\cdot k^5\cdot 44/22 |
12,141 | ( a + b, a + b) = \left( a, a\right) + ( b, b) + ( a, b) + ( b, a) = ( a, a) + ( b, b) + 2\left( a, b\right) |
-4,601 | (y + 2) \left(y + 5(-1)\right) = y^2 - 3y + 10 \left(-1\right) |
-621 | -\pi*8 + \pi \frac{25}{3} = \dfrac{\pi}{3} |
17,741 | \dfrac{1}{\sqrt{9 + 4 + 36}}|7 - 3 + 18 (-1)| = 2 |
15,479 | 6 = 3 \times \left((-1) + 3\right) |
2,535 | r^2 = r' \implies r = r'^{1/2} |
883 | 2^{(-1) + n} \cdot 3 - 2^{(-1) + n} + 3 + 2(-1) = 1 + 2 \cdot 2^{n + (-1)} |
34,977 | \dfrac{1}{4}\times 4 = \frac55 |
-1,470 | \dfrac{2}{7} \div - \dfrac{4}{9} = \dfrac{2}{7} \times - \dfrac{9}{4} |
-9,476 | -5 \cdot x = -x \cdot 5 |
28,483 | \cos{z} \cdot 2 = 4 \cdot \cos^2{z/2} + 2 \cdot \left(-1\right) |
29,607 | e^{y \cdot i} = e^{i \cdot y} |
36,418 | \dfrac{2y}{y + 7(-1)} = \tfrac{1}{y + 7(-1)}\left(2y + 14 (-1) + 14\right) = 2 + \frac{14}{y + 7(-1)} |
42,140 | 3*3 + 3\left(-1\right) = 6 |
11,791 | \cos(x) = \cos\left(-x + 2\cdot \pi\right) |
-2,541 | (5 + 3 \times (-1) + 4) \times \sqrt{6} = \sqrt{6} \times 6 |
-9,867 | -\frac{1}{25}17 = -\dfrac{1}{50}34 |
7,059 | 1/(E*B) = 1/\left(E*B\right) |
38,409 | -\frac{\pi}{4} = ((-1) \pi)/4 |
32,032 | 5\cdot (-1) + y^2 - y\cdot 4 = (y + 2\cdot \left(-1\right))^2 + 9\cdot (-1) |
4,552 | \frac{x^3 - 7 x}{x^2 x} = -\frac{1}{x^2} 7 + 1 |
21,105 | |y| < 2 \Rightarrow |\frac{y}{2}| \lt 1 |
24,565 | z \cdot (z + 1) = z \cdot \left(z + 1\right) = z \cdot z + z |
-13,984 | \left(2 + 4 - 6*3\right)*8 = (2 + 4 + 18*(-1))*8 = (2 - 14)*8 = (2 + 14*(-1))*8 = (-12)*8 = \left(-12\right)*8 = -96 |
3,927 | xH = Hx * x\Longrightarrow x \in H |
19,522 | \cos{5*x} = \sin\left(5/2*\pi - 5*x\right) = \sin{5*(\pi/2 - x)} |
18,467 | (1 - 6 \cdot a^2) \cdot \tfrac{2}{3} = 0\Longrightarrow a = \dfrac{1}{\sqrt{6}} |
-10,470 | \frac{9}{q \cdot 15} = \tfrac{3}{5 \cdot q} \cdot \frac33 |
15,040 | (-p + 1)/p\cdot \frac{p \cdot p}{1 - p^2} = \frac{1}{p + 1}\cdot p |
-6,424 | \frac{4}{3\cdot (9\cdot \left(-1\right) + a)} = \dfrac{4}{27\cdot (-1) + 3\cdot a} |
23,888 | \dfrac01 + 8 = 8/1 |
17,188 | k + 2\cdot (-1) = k + 4\cdot \left(-1\right) + 2 |
-20,182 | -\frac{36}{18 \cdot (-1) + 81 \cdot p} = 9/9 \cdot (-\frac{4}{9 \cdot p + 2 \cdot (-1)}) |
18,426 | 14 = 2\cdot 7 = (1 + (-13)^{1/2}) (1 - \left(-13\right)^{1/2}) |
12,501 | \frac11x = \tfrac{1}{1/x} |
5,226 | n \times n - \dots \times 2 = n! |
-11,499 | 4 + 2i = 2i + 1 + 3 |
4,013 | h c + c + h + 1 = (h + 1) (c + 1) |
-22,028 | \dfrac{32}{24}=\dfrac{4}{3} |
26,587 | l^2 = l!\cdot \frac{1}{(l + (-1))!}\cdot l |
46,603 | 39 = 29 + 2 + 8 |
13,555 | 8/216 = \frac{1}{36} \cdot 2 \cdot \frac{1}{6} \cdot 4 |
30,618 | 149/32 = \frac{23400 + 8500 (-1)}{11700 + 8500 (-1)} |
16,242 | \frac{1}{7!} \cdot (7! - 2 \cdot 6!) = \frac{1}{7} \cdot \left(7 + 2 \cdot \left(-1\right)\right) = 5/7 |
29,691 | \frac{1}{2^5} \cdot \binom{5}{3} = \frac{10}{32} = \frac{1}{16} \cdot 5 |
8,069 | \left((-1) + 2*a\right)*x_1*x_2 = (a + (-1))*x_1*x_2 + a*x_2*x_1 |
17,695 | (y^2 + (-1)) * (y^2 + (-1)) = (1 + y) ((-1) + y) ((-1) + y) \left(y + 1\right) |
26,637 | \binom{7}{2}\binom{3}{2}=63 |
6,539 | 2(-1) + z + 1 = z + (-1) |
-4,443 | \frac{-9\cdot z + 1}{(-1) + z \cdot z} = -\frac{5}{z + 1} - \dfrac{4}{(-1) + z} |
41,168 | \lceil \frac{1006^2}{2013} \rceil =503 |
29,746 | C/x + \frac{1}{x^2}\cdot B = \tfrac{1}{x^2}\cdot (B + x\cdot C) |
427 | \mathbb{E}(R \cdot C) = \mathbb{E}(R) \cdot \mathbb{E}(C) |
6,644 | \binom{n + (-1)}{\left(-1\right) + k} + \binom{n + (-1)}{k} = \binom{n}{k} |
22,280 | 2^i = 2 + 4 + 6 + \dots + 2\cdot i |
20,468 | (z + y)\cdot (z - y) = -y^2 + z^2 |
17,590 | (y - \sqrt{2}) \cdot (y + \sqrt{2}) = y^2 + 2 \cdot (-1) |
-3,023 | 13^{1 / 2}*5 = (3 + 2)*13^{\frac{1}{2}} |
39,721 | \frac{1}{2} = |-1|/2 |
-30,268 | \dfrac{1}{y + 3}(y^2 + y + 6(-1)) = \dfrac{(y + 2\left(-1\right)) (y + 3)}{y + 3} = y + 2(-1) |
26,793 | 4^k*2^k = 2^{k*3} |
23,930 | e^x = z \Rightarrow e^{2 \cdot x} = z^2 |
16,597 | 4\cdot \cos(\theta) = 3^{1/2}\cdot \sin(\theta)\cdot \csc^2\left(\theta\right) = 3^{1/2}\cdot \csc(\theta) |
-17,170 | 2 = 2\cdot (-2\cdot q) + 2\cdot (-8) = -4\cdot q - 16 = -4\cdot q + 16\cdot (-1) |
57 | a + d - 2d = -d + a |
-6,429 | \frac{2}{2 p + 16 \left(-1\right)} = \frac{1}{(p + 8 (-1))\cdot 2} 2 |
17,115 | ( x, z) + ( x', e) := ( x + x', e + z) |
7,969 | d + \frac{1}{2} \left(h - d\right) = \dfrac{1}{2} (h + d) |
12,301 | \frac{\sqrt{2}}{2} = \sin\left(\pi/4\right) |
32,260 | (x y)^2 = y^2 x x |
6,713 | 4*x*z = -(x - z)^2 + (x + z)^2 |
-441 | -\pi\cdot 8 + \pi\cdot 26/3 = 2/3\cdot \pi |
27,731 | (n + (-1))^2 = 1 + n^2 - n*2 |
8,865 | 3 - f^2 + f\cdot 2 = -(f + 3\cdot (-1))\cdot \left(1 + f\right) |
-22,243 | 21 + q \cdot q + 10 \cdot q = \left(3 + q\right) \cdot (7 + q) |
-15,786 | \dfrac{7}{10} \cdot 8 - 3/10 \cdot 5 = 41/10 |
8,855 | 3^{n + (-1)} = \dfrac{1}{13} \cdot (3^{1 + n} + 3^n + 3^{(-1) + n}) |
30,515 | rs a = rsa |
15,204 | l^{l + q} = (-q + l + q)^{q + l} |
-5,444 | 10^5*0.4 = 0.4*10^{(-4)*\left(-1\right) + 1} |
11,485 | \frac{1}{2}\cdot (2 + 3) = \frac52 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.