id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
20,915 | x_k\cdot X_k = x_k\cdot X_k |
35,210 | -x + k = 1 \Rightarrow k + \left(-1\right) = x |
9,455 | B \cdot A = I \implies A \cdot B = I |
2,162 | 150 - 3/2\cdot x = \left(600 - 6\cdot x\right)/4 |
4,587 | 5 \cdot \dfrac{1}{216}/\left(1/12\right) = 5/18 |
5,759 | v \cdot v^T \cdot W = v \cdot W \cdot v^T |
4,407 | 99*(99 + 1) (198 + 1 + 1) = 200*100*99 |
31,876 | x^2 + 8 \cdot x + 7 = (1 + x) \cdot (x + 7) |
-2,530 | 6\cdot 6^{1/2} = 6^{1/2}\cdot (4 + 2) |
30,053 | l \cdot \binom{m}{l} = (m - l + 1) \cdot \binom{m}{l + (-1)} = m \cdot \binom{m + \left(-1\right)}{l + (-1)} |
28,682 | \lim_{z \to \infty} \sin{z} = \lim_{z \to 0^+} \sin{\frac1z} |
-22,213 | 18 + x^2 - 11*x = (x + 2*(-1))*(9*\left(-1\right) + x) |
25,844 | 0 = v*2 \implies v = 0 |
14,533 | 1/24 = \frac{1/6}{4} |
19,604 | x*u + u*n = u*\left(x + n\right) |
-6,728 | \tfrac{2}{100} + \frac{8}{10} = \frac{2}{100} + 80/100 |
19,766 | det\left(A \cdot A^T\right) = det\left(A^T \cdot A\right) |
25,243 | \frac12\cdot2\pi=\pi |
31,104 | 1328/2450 = 1 - \frac{34}{50} \cdot \dfrac{1}{49} \cdot 33 |
11,885 | \cos(\frac{\pi}{8}) = \frac{1}{2} \cdot \sqrt{\sqrt{2} + 2} |
19,759 | x_n\sqrt{n}=\frac{x_n}{\frac{1}{\sqrt{n}}} |
18,061 | \dfrac{1}{36} + \tfrac{1}{18} + \frac{1}{12} = (1 + 2 + 3)/36 = 6/36 = 1/6 |
7,129 | \sqrt{S_n} = x_n \Rightarrow S_n = x_n^2 |
2,390 | \frac{1}{-\sin{x}\cdot 4 + \cos{x}}4 = r \implies -4\sin{x} r + r\cos{x} = 4 |
14,661 | x = \sin^2(p) \implies \cos(2\cdot p) = 1 - 2\cdot \sin^2(p) = 1 - 2\cdot x |
25,044 | \dfrac{1}{-x + x^2} + \frac{x^2}{-x + x^2} = \frac{1}{-x + x^2}\cdot (1 + x^2) |
22,644 | U \cdot |U|^{2 \cdot (-1) + p} = u \Rightarrow u \cdot |u|^{\frac{1}{p + (-1)} \cdot (2 - p)} = U |
22,998 | {7 \choose 2}\cdot {10 \choose 1}\cdot 3\cdot 2 = 1260 |
7,868 | y = \frac{1}{e}*y*e |
6,703 | C^k*C = C^{k + 1} |
-9,265 | -35 d^2 + d\cdot 14 = -5\cdot 7 d d + 2\cdot 7 d |
-22,193 | (9 \cdot \left(-1\right) + q) \cdot \left(6 + q\right) = 54 \cdot (-1) + q^2 - 3 \cdot q |
-3,257 | (3 + 2 \cdot (-1)) \cdot 2^{1/2} = 2^{1/2} |
13,008 | 4960 = 10^4 - 10\cdot 9\cdot 8\cdot 7 |
29,480 | 112 = 9\left(-1\right) + 121 |
-1,334 | 7/3 (-\frac19) = \frac{1}{3 \cdot 1/7} ((-1) \dfrac19) |
-18,250 | \tfrac{1}{z^2 - z\cdot 7}\cdot (z \cdot z - 6\cdot z + 7\cdot \left(-1\right)) = \frac{\left(z + 1\right)\cdot (7\cdot (-1) + z)}{z\cdot \left(z + 7\cdot (-1)\right)} |
-10,600 | 5/5 \cdot \frac{10}{y + 3 \cdot (-1)} = \frac{50}{5 \cdot y + 15 \cdot \left(-1\right)} |
-16,612 | 5 \cdot 4^{\tfrac{1}{2}} \cdot 2^{1 / 2} = 5 \cdot 2 \cdot 2^{1 / 2} = 10 \cdot 2^{1 / 2} |
-19,408 | 8/5\cdot 6/1 = \frac{6}{5}\cdot 8 = \frac{48}{5} |
-10,513 | -\dfrac{8}{5 + 2 \cdot t} \cdot 3/3 = -\frac{1}{t \cdot 6 + 15} \cdot 24 |
3,081 | (2 + k^2 + 3*k)*(k + 1) = \left(1 + k\right)^2*(k + 2) |
14,991 | a \cdot c < a^2 + c \cdot c - a \cdot c \Rightarrow a^3 + c^3 \gt a \cdot c \cdot (a + c) = a^2 \cdot c + a \cdot c^2 |
27,728 | b*a*a*b = a*a*b*b |
32,389 | 1729 = 1^3 + 12^3 |
1,744 | 1 + x^2 + x = \frac14*3 + (x + \frac12)^2 |
29,723 | 1/45057474 = \frac{1}{\frac{1}{6! \cdot 53!} \cdot 59!} |
3,911 | (y + 1)^3 = y \cdot y^2 + y^2 \cdot 3 + y \cdot 3 + 1 |
5,606 | \left(1 + y\right)^{m*2} = (1 + y)^m*\left(y + 1\right)^m |
11,061 | 0 = a^2 + h^2 - a \cdot h \cdot 2 \Rightarrow (a - h)^2 = 0 |
8,820 | g*e*f = e*f*g |
23,993 | (x + h)*(x + U) = x^2 + h*x + U*x + h*U = x^2 + (h + U)*x + h*U |
11,054 | (2 + i)^2 = 4 + i^2 + 4i |
-8,091 | \dfrac{-23 - 15 i}{-5 - i} = \dfrac{1}{-5 - i}(-23 - 15 i) \frac{1}{-5 + i}(i - 5) |
37,979 | 3^{20\cdot j} = 9^{10\cdot j} |
7,028 | x^2/49 = y^2/1 = z^2/9 = \frac{1}{9}(x + y - z)^2 |
8,694 | (z^{2^j})^2 = z^{2^{j + 1}} |
20,175 | \dfrac{4 / 27}{2}1 = \tfrac{4}{54} |
44,406 | 1 = 2*5 + 9(-1) |
31,057 | g\cdot \frac{a\cdot b}{f} = \frac{b}{f}\cdot a\cdot g |
628 | \sum_{l=1}^x \left(x + 1 - l\right) = \sum_{l=1}^x x + \sum_{l=1}^x 1 - \sum_{l=1}^x l |
35,809 | 499 = \dfrac{124750}{250} |
-8,829 | 168 = 7*6*4 |
1,868 | \frac{f}{b\cdot g} = f/(b\cdot g) |
21,051 | \frac{dt}{dq} = \frac{4 \cdot t^2}{4 \cdot t \cdot q} = t/q |
18,622 | \left(x^4 + z^4\right)^2 = \left(x^4 - z^4\right)^2 + (2 \cdot x^2 \cdot z^2)^2 |
7,639 | (1 - 3k)^2 - 4k^2 = 1 - 6k + 5k * k = 5\left(k - 1/5\right) (k + (-1)) |
32,095 | x \neq 0 \Rightarrow 1 = x/x |
-3,613 | 5/4\cdot n = \frac{5}{4}\cdot n |
6,662 | -8 = \left(\cos(\pi) + i\sin(\pi)\right) \cdot 8 |
-19,587 | \frac{\dfrac14}{\dfrac{1}{5}*9}*7 = 5/9*\frac{7}{4} |
-19,997 | \frac{1}{12 \cdot t + 16} \cdot (-54 \cdot t + 72 \cdot (-1)) = \frac{1}{6 \cdot t + 8} \cdot (6 \cdot t + 8) \cdot (-\frac92) |
15,351 | \cos(z + y) = -\sin{z}\times \sin{y} + \cos{z}\times \cos{y} |
-10,323 | \frac{4 \cdot (-1) + x}{x \cdot 10} \cdot \frac22 = \frac{1}{x \cdot 20} \cdot (8 \cdot (-1) + 2 \cdot x) |
-1,445 | 7/6 \cdot \tfrac52 = \frac{5 \cdot \frac12}{1/7 \cdot 6} |
5,801 | 24*(-1) + 72 = 48 |
2,024 | k^2 \cdot k + k^2 + k \cdot 2 + 1 = k^3 + (k + 1)^2 |
-12,105 | \frac{1}{9}\times 5 = \dfrac{x}{6\times \pi}\times 6\times \pi = x |
13,048 | D = x_2 \cap \dfrac{D}{x_1} = \frac{1}{x_1}\cdot D\cdot D/(x_2) |
7,023 | ba^2 = ba a |
6,323 | \frac{1}{-(-3\cdot t + 1) + 8}\cdot (5 - t) = 3 rightarrow -8/5 = t |
2,958 | \frac{3}{\sqrt{5}\times \dfrac15} = 15/\left(\sqrt{5}\right) |
17,525 | 22 - 4 \cdot \left(16 + 21 \cdot (k + (-1)) + (-1)\right) = 42 - 84 \cdot k = 21 \cdot (2 - 4 \cdot k) |
19,732 | s + 0*\left(-1\right) = s |
30,786 | 0 = {0 \choose 1} |
16,921 | 10*x = \dfrac{\left(-20\right)*x}{-2} = -0.5*(-20*x) |
11,313 | \left((-1) + 2^l\right) \cdot 2 - 2^l l = -(l + 2(-1)) \cdot 2^l - 2 |
35,608 | w^V = w^V |
-7,149 | \frac{3}{11}\cdot 3/12 = \frac{3}{44} |
41,345 | \frac{1}{4} = \frac{1}{6} + 1/12 |
-26,573 | 16 - z \cdot z \cdot 49 = 4 \cdot 4 - (z \cdot 7)^2 |
-1,589 | π\cdot 7/4 = -\frac{π}{4} + 2\cdot π |
3,586 | 0.0625 \cdot 0.8888 = 0.0625 \cdot \left(0.0001 + \dots + 0.1111\right) |
23,553 | \left(-x + 1\right)\cdot (1 + x) = 1 - x^2 |
-3,648 | 120/144 \dfrac{k^4}{k^3} = \dfrac{1}{144 k^3} 120 k^4 |
24,324 | \frac{18}{3\times \left(1 + 5 + 4\times (-1)\right)} = 3 |
17,468 | b^{d + c} = b^c*b^d |
-5,058 | \frac{1}{100}\cdot 87 = \dfrac{87}{100} |
8,459 | \frac{\mathrm{d}}{\mathrm{d}y} \sqrt{y} = 1/(2\sqrt{y}) |
37,562 | \binom{n}{i}*i = n*\binom{n + (-1)}{(-1) + i} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.