id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
-18,383 | \tfrac{1}{\left(4*(-1) + y\right)*\left(y + 4*(-1)\right)}*(y + 4*(-1))*y = \tfrac{1}{16 + y^2 - 8*y}*(y^2 - y*4) |
27,349 | ((-1) + g)^1 = g^1 + (-1)^1 |
10,324 | \frac59 = 1 - \frac19\times 4 |
-3,860 | 12\cdot r^3/(r\cdot 42) = \frac{12}{42}\cdot r^3/r |
-15,193 | \frac{x^{15}}{\frac{1}{x^3} \cdot \tfrac{1}{z^5}} = \frac{1}{\frac{1}{z^5}} \cdot x^3 \cdot x^{15} = x^{15 - -3} \cdot z^5 = x^{18} \cdot z^5 |
36,755 | \frac{0 + 6\cdot \left(-1\right)}{6.04 + 0\cdot \left(-1\right)} = -6/6.04 |
4,481 | \left(3 + x\right)^{\dfrac32} - 3 \cdot \sqrt{x + 3} = x \cdot \sqrt{3 + x} |
-6,745 | 6/100 + 4/10 = 40/100 + \frac{1}{100}6 |
18,034 | \cot{\dfrac16π} = 3^{1 / 2} |
23,519 | 3 \cdot \sec{k} = y \Rightarrow \sec{k} = y/3 |
14,624 | i = x + 2(-1) \implies 2\left(-1\right) + x = \left\lfloor{\frac1x(1 + i)^2}\right\rfloor |
-15,507 | \frac{1}{i^{20} \cdot (\frac{1}{i^4} \cdot p)^2} = \frac{1}{\frac{1}{i^8} \cdot p^2 \cdot i^{20}} |
37,725 | 6!*4! = 5!*4!*6 |
15,481 | x \cdot x + 1 = \dfrac{1}{42}\cdot (x^2\cdot 42 + 42) |
25,434 | -\frac12*z + 3/z = -\dfrac{z}{2} + 3/z |
21,765 | (p^{k/2} + \left(-1\right)) \cdot (1 + p^{k/2}) = (-1) + p^k |
21,555 | \frac38 = \frac{3}{2 \times 4} |
-4,275 | \frac{1}{r^3}\cdot r\cdot \dfrac{80}{8} = \frac{80\cdot r}{8\cdot r^3}\cdot 1 |
25,707 | 2 + \frac{1}{3} = \frac{7}{3} |
12,910 | (y + 2 \cdot \left(-1\right))^2 + (y^2 - 1/2)^2 = y^2 - 4 \cdot y + 4 + y^4 - y^2 + 1/4 = y^4 - 4 \cdot y + \dfrac{17}{4} |
14,719 | 3430 = {8 \choose 3} {7 \choose 3} + {8 \choose 4} {7 \choose 2} |
-17,481 | 19\cdot (-1) + 29 = 10 |
-2,065 | \pi/3 + \pi \cdot 5/12 = \pi \cdot \tfrac{3}{4} |
5,769 | P^2 - P*z*2 + z^2 = (P - z)^2 |
11,585 | 1/10 + \frac12 = \dfrac{3}{5} |
32,083 | 0 = f^2 \Rightarrow 0 = f |
-22,554 | 7/8 \cdot (-\dfrac{1}{9} \cdot 2) = \frac{7 \cdot \left(-2\right)}{8 \cdot 9} = -14/72 = -7/36 |
46,620 | \dfrac{1}{s^2} \cdot \sin(s^4 \cdot (\cos^4(x) - \sin^4(x))) = \frac{\sin(s^4 \cdot (\cos^2\left(x\right) - \sin^2(x)))}{s \cdot s} = \frac{1}{s^2} \cdot \sin(s^4 \cdot \cos(2 \cdot x)) |
31,624 | (z\cdot 4 + 2)^2 = (2 + z\cdot 4)\cdot (2 + 4\cdot z) |
35,930 | Var\left[x_k\right] = \mathbb{E}\left[(x_k - \mathbb{E}\left[x_k\right])^2\right] = \mathbb{E}\left[(x_k + 5*\left(-1\right))^2\right] |
-19,072 | \frac{1}{2} = \frac{1}{49 \cdot \pi} \cdot X_s \cdot 49 \cdot \pi = X_s |
1,298 | 1 - y^2 = z^2\Longrightarrow \sqrt{-y^2 + 1} = z |
7,364 | 6^3 = 5^3 + 3 \cdot 3^2 + 4^3 |
-7,234 | 1/8 = 6/16 \cdot \dfrac{5}{15} |
-5,940 | \frac{5}{a\cdot 2 + 4} = \frac{5}{2\cdot (2 + a)} |
-16,027 | \tfrac{6}{10}\cdot 6 - 7\cdot \frac{1}{10}\cdot 4 = 8/10 |
784 | -\pi\cdot 515/54 = (10 - \frac{25}{54})\cdot \dfrac{\pi\cdot i\cdot 2}{i\cdot (-2)} |
-11,876 | 8.414 \times 0.001 = 0.008\;414 |
40,417 | 1^4*3 + 3^4 - 3*2^4 = 36 |
25,405 | 1 + 2^{30} = 5 \cdot 5 \cdot 13 \cdot 41 \cdot 61 \cdot 1321 |
33,598 | \left(y^4 + y^3 + y^2 + y + 1\right) (y + (-1)) = y^5 + \left(-1\right) |
6,738 | -Q! + x! = (x!/Q! + (-1)) Q! |
17,979 | \frac{g - b - x}{g - b + x} = \frac{1}{\tfrac{x}{-b + g} + 1}\cdot (1 - \frac{1}{g - b}\cdot x) |
-25,055 | \frac{1}{9}\cdot \dfrac{1}{5} = 2/90 = 1/45 |
31,666 | A*(r + s) = rA + As |
-11,328 | \left(x + 8\right) * \left(x + 8\right) + d = (x + 8) (x + 8) + d = x^2 + 16 x + 64 + d |
-10,414 | 10/10 \cdot \frac{6}{t + (-1)} = \frac{1}{10 \cdot (-1) + 10 \cdot t} \cdot 60 |
10,261 | 5 + 2\times \sqrt{13} = (f + d\times \sqrt{13})^3 = f^3 + 39\times f\times d^2 + (3\times f \times f\times d + 13\times d^3)\times \sqrt{13} |
876 | 15 = x^4 - z^4 \Rightarrow 15 = (x^2 - z^2)*(x * x + z^2) |
-623 | e^{\pi \cdot i/12 \cdot 9} = (e^{\frac{1}{12} \cdot i \cdot \pi})^9 |
-4,815 | 29.2\cdot 10^4 = 29.2\cdot 10^{0 + 4} |
31,527 | p\cdot q^2\cdot a\cdot (d_x - d_r) = p\cdot a\cdot (d_x - d_r)\cdot q^2 |
15,051 | (5 + (-1))^2 + (3\cdot (-1) + 4)^2 + (2 + 2) \cdot (2 + 2) = q \cdot q \Rightarrow 33^{1 / 2} = q |
-2,298 | -1/11 + \frac{3}{11} = 2/11 |
12,518 | ( -x + d \cdot 2, y) = ( d - -d + x, y) |
36,209 | \left(1 = 3^{x + 1} \Rightarrow 1 + x = 0\right) \Rightarrow -1 = x |
10,989 | z^n = z^{2\cdot n/2} = \left(z^{2\cdot n}\right)^{1/2} = (z^{2\cdot n})^{\dfrac{1}{2}} |
31,640 | \left(y^2 = z \Rightarrow z^{\frac{1}{2}} = (y^2)^{\frac{1}{2}}\right) \Rightarrow z^{\frac{1}{2}} = |y| |
-12,815 | 4\cdot \left(-1\right) + 18 = 14 |
17,089 | \frac{\sin(g)}{\cos(g)} = 0.3/0.4 \Rightarrow 0.3 = \sin(g)\wedge 0.4 = \cos(g) |
8,788 | \cos\left(-x + 2 \pi\right) = \cos{x} |
11,030 | \frac{1}{Y\cdot Z} = 1/(Z\cdot Y) |
29,049 | 2 \cdot n + (-1) = \left(n + (-1)\right) \cdot 2 + 1 |
35,101 | (1 + a)\cdot \left(1 + a \cdot a\right)\cdot (1 - a) = 1 - a^4 |
-20,746 | \frac{35*t + 14}{35*(-1) - 63*t} = \frac{7}{7}*\frac{1}{-t*9 + 5*(-1)}*(2 + 5*t) |
27,484 | \frac12\left(0 + 1\right) = 1/2 |
41,525 | 6^5 + 6^5 + 6^5 = 108 \cdot 108\cdot 2 |
-10,786 | \frac{100}{5} = 20 |
-5,612 | \frac{1}{g \cdot g - 8\cdot g + 20\cdot \left(-1\right)}\cdot 2 = \frac{1}{(g + 2)\cdot (g + 10\cdot (-1))}\cdot 2 |
-9,104 | \frac{1}{100}\cdot 69.9 = 69.9\% |
18,493 | 1 + l^3 = (1 + l) (l \cdot l - l + 1) |
14,180 | x^{p^d} = x \implies x = \left(x^{p^{(-1) + d}}\right)^p |
14,210 | (-6)*(-6) = 36 |
11,205 | ((-1) + r^2)^2 + 2 \cdot r^2 = r^4 + 1 |
28,599 | 2/45 = \frac{1}{90} + 1/30 |
-642 | e^{\frac{\pi}{3} \cdot i \cdot 8} = (e^{\pi \cdot i/3})^8 |
-2,338 | -\frac{1}{14} + \frac{2}{14} = \dfrac{1}{14} |
-20,264 | -\frac{6}{5}\cdot \frac{-q\cdot 4 + 6}{6 - q\cdot 4} = \dfrac{36\cdot \left(-1\right) + 24\cdot q}{-q\cdot 20 + 30} |
4,937 | f/g + a/g = \dfrac1g\cdot (a + f) |
25,360 | \frac{1}{x + 1}\cdot x = \frac{p\cdot 1/s}{1 + \frac1s\cdot p} \Rightarrow p/s = x |
38,183 | 100 = 10^2 \cdot 1.0 |
25,202 | \mathbb{E}[X]*\mathbb{E}[X] = \mathbb{E}[X^2] |
11,417 | 1/36*5/6 = 5/216 |
3,505 | \sin(x + \frac12\cdot π) = \cos(x) |
12,698 | v^T*y = (v^T*y)^T = y^T*v |
32,323 | \left|{v_1\times v_2\times v_3}\right| = -\left|{v_3\times v_2\times v_1}\right| = \left|{v_2\times v_3\times v_1}\right| |
-25,029 | \operatorname{atan}(-2\cdot y) = -y\cdot 2 + 8/3\cdot y^3 - \dfrac{32}{5}\cdot y^5 + y^7\cdot 128/7 + \cdots |
2,463 | 20 \cdot \left(-2\right) + 15 \cdot (-1) \cdot 2 + 12 \cdot \left(-1\right) \cdot 3 = -40 + 30 \cdot (-1) + 36 \cdot (-1) = -106 |
32,516 | 1 = \tfrac{1}{2} + \frac14 + 1/6 + 1/12 |
8,795 | (\sqrt{3}/2)^2 + \left(\dfrac{\sqrt{3}}{2}\right)^2 = 3/2 < 1 |
35,969 | \sqrt{-k} \sqrt{-n} = \sqrt{-k \cdot (-n)} = \sqrt{kn} |
19,967 | \tfrac{1}{a}\cdot ((a - 1)\cdot u + 1) = \frac{1}{a}\cdot (-(1 - a)\cdot u + 1) |
12,969 | (x + 1) \cdot (x + 2) = x^2 + 3 \cdot x + 2 |
33,857 | \dfrac{1}{-x + 1} = \frac{1}{1 - x} |
32,206 | \frac{1}{4} = 1/2\cdot (-\frac{1}{2} + 1) |
36,297 | \cos^2(x) - \sin^2(x) = \cos(2\cdot x) |
-11,504 | -5 + 0\cdot (-1) + 5\cdot i = i\cdot 5 - 5 |
6,086 | \frac{2}{5} \cdot \dfrac{1}{7}4 = \frac{1}{35}8 |
2,201 | a*J + 2*b*b' + (b*J + a*b)*\sqrt{2} = \left(\sqrt{2}*b + a\right)*(\sqrt{2}*b' + J) |
3,860 | 7^{15} \cdot (49 + \left(-1\right)) = -7^{15} + 7^{17} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.