id
int64
-30,985
55.9k
text
stringlengths
5
437k
-18,972
\dfrac{1}{15}8 = \dfrac{C_p}{4\pi} \cdot 4\pi = C_p
-25,055
\dfrac{2*10^{-1}}{9} = 2/90 = 1/45
404
1 + 5^{1/2} = \left(x + h\cdot 5^{1/2}\right)\cdot (s + f\cdot 5^{1/2}) = x\cdot s + 5\cdot h\cdot f
-20,985
\frac{1}{9}\cdot 9\cdot \dfrac{1}{7\cdot (-1) + a}\cdot ((-1) + a) = \frac{9\cdot a + 9\cdot (-1)}{a\cdot 9 + 63\cdot (-1)}
-3,401
-3^{\frac{1}{2}} + (16*3)^{1 / 2} = -3^{1 / 2} + 48^{\frac{1}{2}}
-12,362
75 = 5 \cdot 5 \cdot 3
26,715
1 + x^3 = \left(x + 1\right)*\left(1 + x^2 - x\right)
29,120
4/81 = 16\cdot 1/81/4
32,516
\frac{1}{12} + 1/2 + 1/4 + 1/6 = 1
14,727
x^6 + x^4 + x \cdot x \cdot x - x^2 + (-1) = (2 + x^2 - x)\cdot (x^4 + x^3 + (-1)) - x^3 - x + 1
25,825
\mathbb{E}(\left(B - \mathbb{E}(B)\right)^2) = -\mathbb{E}(B)^2 + \mathbb{E}(B \times B)
36,725
-\sin(x) \cdot ((-1) + \cos^2(x)) = \sin^3(x)
16,662
4\cdot (2\cdot \cos^2{x})^2 = 4\cdot (\cos{2\cdot x} + 1) \cdot (\cos{2\cdot x} + 1) = 4\cdot \cos^{22}{x} + 8\cdot \cos{2\cdot x} + 4
-9,383
l*21 = 3*7*l
28,917
\frac15 3 - \frac{1}{5} 3 = 0
7,270
-\left(1/4 + 1/2\right)\times \dfrac{1}{2}\times \frac{1}{2}\times 1/2 + 1 = \frac{29}{32}
2,889
\frac{8}{9} = 1 - \dfrac19
1,186
(2\cdot \dfrac{1}{3})^2 + (2\cdot 2/3)^2 = 20/9 > 2
-10,267
-\frac{45\cdot x + 45\cdot \left(-1\right)}{60\cdot (-1) + 15\cdot x} = 15/15\cdot (-\frac{1}{4\cdot \left(-1\right) + x}\cdot (3\cdot x + 3\cdot \left(-1\right)))
12,471
\tfrac{\sin\left(\pi/x\right)}{x^2} \cdot \pi = \frac{\mathrm{d}}{\mathrm{d}x} \cos(\frac{\pi}{x})
8,947
\operatorname{Var}(-R) = \operatorname{Var}(R)
19,495
\frac{f}{g} - h \cdot g/g = \frac{1}{g} \cdot (f - h \cdot g)
-13,692
6 - 3 \cdot 8 + \frac{48}{6} = 6 - 3 \cdot 8 + 8 = 6 + 24 \cdot (-1) + 8 = -18 + 8 = -10
-20,716
\dfrac{1}{p*\left(-8\right)}*p*14 = -\dfrac{7}{4}*\dfrac{1}{\left(-2\right)*p}*(\left(-2\right)*p)
20,313
(2^m + \left(-1\right)) \cdot \left(2^m + 1\right) = 4^m + (-1)
32,259
a^m = a \times a^{m + (-1)} = a^{m + \left(-1\right)} \times a
29,839
6*5*21^5 = 122523030
-13,895
\dfrac{ -10 }{ (9 - 10) } = \dfrac{ -10 }{ (-1) } = \dfrac{ -10 }{ -1 } = 10
-20,892
-6/5\cdot \dfrac{1}{5}5 = -\frac{1}{25}30
7,873
\cos{\psi_2} = \cos{\psi_1} \Rightarrow \psi_1 = \psi_2
33,245
q^3 + r^3 + 6 \cdot q \cdot r = q^3 + r^3 + 3 \cdot (q + r) \cdot q \cdot r + \left(6 - 3 \cdot q - 3 \cdot r\right) \cdot q \cdot r = (\dfrac12 \cdot 3)^3 + \tfrac32 \cdot q \cdot r
2,221
xt \cdot 2 + p^2 + x^2 + t^2 + 2xp + 2tp = (p + x + t)^2
8,396
j\cdot x = x\cdot j
38,634
X = X\cdot π/π
22,841
A \cdot 7 = A \cdot 4 + A + 2 \cdot A
18,129
\frac{1^{-1}}{3^4}\cdot 1^{-1} = \frac{1}{3^4}\cdot 1 = \frac{1}{3^4}\cdot 1^{-1} = \frac{1}{3^4} = \frac{1}{81}
23,586
(3 \cdot x + x) \cdot 3 = x \cdot 12
-29,471
-8 + \dfrac{70}{-7} = -8 - 10 = -18
-24,721
\frac{1}{k^2 + 16 \cdot (-1)} \cdot \left(2 \cdot (-1) + k \cdot 2\right) + \dfrac{1}{16 \cdot \left(-1\right) + k^2} \cdot (-k + 6) = \tfrac{4 + k}{16 \cdot (-1) + k \cdot k}
41,013
\left(-1\right) + 1024 + 32 + 8 = 1063
5,498
-t/3 + t = \frac{1}{3} \cdot 2 \cdot t
12,294
\frac12 \cdot (f + b) = \frac12 \cdot (2 \cdot f + b - f) = f + (b - f)/2
16,962
50*\sqrt{3} = A + 0*\left(-32\right) rightarrow A = 50*\sqrt{3}
17,443
0 = 0\cdot w = (1 - 1)\cdot w = w - w
10,075
10^6/(\binom{60}{6}) = \frac{1000000}{50063860} = 0.1997
2,965
51^2 - 2 \times 10 \times 10 = 2401
-4,463
\frac{3}{x + 5} - \frac{1}{x + 2 \cdot (-1)} \cdot 2 = \frac{16 \cdot (-1) + x}{10 \cdot \left(-1\right) + x^2 + 3 \cdot x}
-9,589
-\frac{4}{25} = -0.16
17,458
(y + x)^2 = x^2 + 2\cdot x\cdot y + y^2
-2,962
2^{\frac{1}{2}} \cdot (5 \cdot (-1) + 2 + 4) = 2^{1 / 2}
-26,478
3\cdot \left(16 - y\cdot 8 + y^2\right) = 3\cdot y^2 + 48 - y\cdot 24
14,025
7 \cdot {7 + n \choose n} = {6 + n \choose n} \cdot (7 + n)
10,388
\frac{3^3}{3} + 3^2 + \frac{2(3)}{3} = 20
13,925
-e^{x*3} + \frac{\mathrm{d}15}{\mathrm{d}x} = -3*e^{x*3}
-30,970
60 s = 60 s
-11,594
-i \cdot 9 + 6 + 0 \cdot (-1) = 6 - 9 \cdot i
-15,810
9/10\cdot 5 - 8/10 = \frac{37}{10}
10,514
13 + 2\cdot l + 1 = \left(l + 7\right)\cdot 2
47,534
\frac{r}{2 - r} + (1 - r)\times \left(1 - \dfrac{1}{2 - r}\right) = \frac{1}{2 - r}\times (r + (1 - r)\times \left(1 - r\right)) = \frac{1}{2 - r}\times (1 - r + r^2)
31,349
x^2 + 3 \cdot x + 10 \cdot (-1) = \left(x + 2 \cdot (-1)\right)^2 + 7 \cdot x + 14 \cdot \left(-1\right) = (x + 2 \cdot (-1))^2 + 7 \cdot x + 14 \cdot (-1) = (x + 2 \cdot (-1))^2 + 7 \cdot (x + 2 \cdot (-1))
26,156
780 = 780 + 17 \cdot 0
22,598
-\frac{1}{2378} \cdot 5 = -\tfrac{5}{2378}
42,938
\frac{100}{0.625} = 160
691
495 - 5*\binom{7}{3} + \binom{5}{3}*7 + \binom{7}{4} + \binom{5}{4} = 210
12,243
-b^{1 + n} + a^{n + 1} = (a - b) \cdot (a^n + a^{(-1) + n} \cdot b + \dots + b^{(-1) + n} \cdot a + b^n)
17,750
x^2 - 6x = (x + 3(-1))^2 + 9(-1)
31,110
f_2 + f_1 + m = m + f_2 + f_1
-24,193
\dfrac{44}{6 + 5} = \dfrac{44}{11} = 44/11 = 4
-7,235
1/9 = \frac{2}{6}*1/3
2,393
{1 \choose 1} \cdot {3 \choose 2} \cdot {5 \choose 2} \cdot {7 \choose 2} = \frac{1}{2! \cdot 1! \cdot 2! \cdot 2!} \cdot 7!
19,870
\dfrac{1/D\cdot \frac{1}{C}}{D^T} = \dfrac{1}{D\cdot D^T\cdot C}
2,677
c_1\cdot c_2^i = c_1\cdot c_2^i
21,757
z \cdot z + 0\cdot z + 0 = z^2
463
(Z + 1)\times \left((-1) + Z\right) = \left(-1\right) + Z^2
-15,593
\frac{1}{p_2^3 \cdot \frac{1}{\dfrac{1}{p_2^8} \cdot \dfrac{1}{p_1^8}}} = \frac{1}{p_2^8 \cdot p_1^8 \cdot p_2^3}
-2,879
5 \cdot 5^{1/2} + 5^{1/2} \cdot 4 = 16^{1/2} \cdot 5^{1/2} + 25^{1/2} \cdot 5^{1/2}
13,209
x_t + x_q = x_t - x_q + x_q + x_q = x_t - x_q + 2x_q
-341
\frac{6! \cdot 1/3!}{1/6! \cdot 9!} = \tfrac{6! \cdot \frac{1}{3! \cdot (6 + 3 \cdot (-1))!}}{\tfrac{1}{3! \cdot \left(9 + 3 \cdot (-1)\right)!} \cdot 9!}
22,600
\frac13\cdot (1 + L) = L \implies L = 1/2
27,310
i!*\left(i + 1\right) = (1 + i)!
7,569
|(y + \left(-1\right))*(2*(y + 1) + 3) + 3| = \cdots = |\left(y + (-1)\right)*(2*y + 5) + 3| = |\left(y + (-1)\right)*(2*y + 2*\left(-1\right) + 7) + 3| = |y + (-1)|*(2*|y + \left(-1\right)| + 7) + 3
12,380
\pi = x*2 \implies \pi/2 = x
18,114
\frac13 = \dfrac{10}{30}
13,974
A + B + C = 0 \Rightarrow \sin(A + B) = \sin(-C) = -\sin\left(C\right), \cos\left(A + B\right) = \cdots = \cos(C)
21,580
x + \left(-1\right) + x + \left(-1\right) = 2 \cdot x + 2 \cdot (-1) \gt x
50,794
1 = \frac{1}{2} + \frac12
8,805
X_{2 \cdot r} - X_r - -X_w + X_{2 \cdot w} = -(X_r - X_w) + X_{r \cdot 2} - X_{w \cdot 2}
22,620
(-c + a) \cdot (a^{n + (-1)} + c \cdot a^{2 \cdot (-1) + n} + a^{n + 3 \cdot \left(-1\right)} \cdot c \cdot c + ... + c^{3 \cdot (-1) + n} \cdot a^2 + c^{n + 2 \cdot (-1)} \cdot a + c^{(-1) + n}) = a^n - c^n
10,990
\pi/2 + l\pi*2 = \pi*(1 + l*4)/2
43,769
11^3*7*13 = 121121
-20,997
4/4\cdot \frac{-r + 3\cdot (-1)}{r\cdot 2} = (12\cdot (-1) - r\cdot 4)/(r\cdot 8)
3,328
(xy)^2 = y \cdot y x^2
523
\cos(2q) = 1 - 2\sin^2(q)
2,681
\binom{m + (-1)}{0} = \binom{m}{0}
-20,012
\frac{k\cdot 3 + 5}{k\cdot 3 + 5}\cdot 5/8 = \frac{25 + 15\cdot k}{k\cdot 24 + 40}
35,998
\binom{l - 1/2}{l} = (-1)^l\cdot \frac{\binom{2\cdot l}{l}}{4^l} \approx \frac{1}{\sqrt{\pi\cdot l}}\cdot (-1)^l
17,325
x\times 2 = \frac{d}{dx} x^2
-23,829
10 + \frac{1}{10}90 = 10 + 9 = 10 + 9 = 19
-5,741
\frac{1}{q \cdot q - q \cdot 10 + 9} \cdot 3 \cdot q = \tfrac{3 \cdot q}{\left(9 \cdot (-1) + q\right) \cdot \left(q + (-1)\right)}
12,155
(m + (-1)) * (m + (-1)) = 1 + m * m - 2m