id
int64
-30,985
55.9k
text
stringlengths
5
437k
12,413
(y + (-1)) (y^2 + y + 1) = y \cdot y \cdot y + (-1)
21,318
\frac{5!}{3} \cdot \dfrac{1}{2} = 20
33,381
3744 = 3796 + 52 \cdot \left(-1\right)
21,040
\lim_{t \to \infty} |2 \cdot (-1) + t|/t = \lim_{t \to \infty} \left(t + 2 \cdot (-1)\right)/t
4,101
(x + 1)\cdot (2\cdot (-1) - x^2 + x\cdot 2) = -x^3 + x^2 + 2\cdot (-1)
-4,770
\dfrac{15\cdot (-1) + 6\cdot y}{y^2 - y\cdot 5 + 4} = \frac{3}{4\cdot (-1) + y} + \frac{1}{(-1) + y}\cdot 3
7,818
\left(c + b\right)\cdot a = a\cdot c + a\cdot b
3,592
\cos(30)\cdot \sin(C)\cdot H\cdot 2 = x_3 - x_1 \Rightarrow \sin(C)\cdot H = \frac{1}{3^{1 / 2}}\cdot (-x_1 + x_3)
4
x = E_1\cdot E_2 rightarrow E_2\cdot E_1 = x
34,873
{94 \choose 3} = 134044
50,878
4\cdot x = 3\cdot x + x \geq 1 + x
2,156
\sqrt{64}/(\sqrt{8}) = \sqrt{\dfrac18 \cdot 64} = \sqrt{8} = 2 \cdot \sqrt{2}
39,178
\left(\tan{2\cdot x} - \sin{4\cdot x} = 0 \implies \sin{x\cdot 4} = \tan{2\cdot x}\right) \implies \dfrac{\sin{2\cdot x}}{\cos{2\cdot x}} = \sin{x\cdot 4}
18,092
\sin^{26}(x) - \sin^{24}(x) = \sin\left(6 \cdot x + 4 \cdot x\right) \cdot \sin(6 \cdot x - 4 \cdot x) = \sin(2 \cdot x) \cdot \sin(10 \cdot x)
25,422
3 = \frac{2!}{2!}2!/2! \binom{3}{2}
-13,214
-16.8/\left(-0.21\right) = 80
1,999
{l + q + (-1) \choose l} = {l + q + (-1) \choose q + \left(-1\right)}
4,244
\left|{E \cdot E^T}\right| = 0 = \left|{E^T \cdot E}\right|
23,492
0 = \cos(\tfrac{1}{2^{0 + 1}}*\pi)
19,116
\frac{2}{x + 2} = \frac{2}{x + (-1) + 3} = \frac{2}{3} \times \frac{2}{(x + (-1))/3 + 1}
34,298
2 \cdot 3 + 2 = 8
6,357
3\cdot y^2 - 7\cdot y + 2 = \left(y\cdot 3 + (-1)\right)\cdot (2\cdot (-1) + y)
9,107
\frac{l^2 + 9*(-1)}{4*(-1) + l} = \frac{7}{l + 4*\left(-1\right)} + l + 4
39,721
\frac12*|-1| = 1/2
-2,511
7^{1/2} = 7^{1/2} \cdot \left(3 + 2 \cdot (-1)\right)
29,273
A^2\cdot B^2 = (A\cdot B)^2
5,868
3/4\cdot \tfrac{2}{5}\cdot \frac{4}{7}\cdot 7/10\cdot \frac69\cdot 5/8\cdot 3/6 = \frac{3\cdot 7\cdot 6\cdot 5\cdot 4\cdot 3\cdot 2}{4\cdot 10\cdot 9\cdot 8\cdot 7\cdot 6\cdot 5}
12,132
\sin(\dfrac{3}{2} \cdot \pi - E) = -\cos(E)
21,633
\dfrac14*2 / 5 = \dfrac{1}{10}
8,687
\dfrac{14}{12} = 7/6
-26,046
(d - h)\cdot (h + d) = -h^2 + d^2
14,332
\tfrac{a - b}{a + b} = -2 \cdot \frac{b}{a + b} + 1
13,323
1 - \frac{15!*D_{15}}{15!^2}*1 = 1 - D_{15}/15!
-9,154
-15 \cdot z^3 = -z \cdot z \cdot 3 \cdot 5 \cdot z
27,375
\overline{q} + \overline{x} = \overline{q + x}
-10,609
\frac{1}{12*x + 8}*12 = \frac{3}{2 + 3*x}*4/4
-20,344
\frac55 \cdot \frac{\left(-1\right) + 5 \cdot x}{4 \cdot x} = \tfrac{1}{x \cdot 20} \cdot \left(x \cdot 25 + 5 \cdot (-1)\right)
-9,156
-a\times 7\times 7\times a + 2\times 5\times 7\times a = -a^2\times 49 + a\times 70
14,637
\dfrac{1}{|a|^n + (-1)} = \frac{1}{|a|^n\cdot (|a|^n + \left(-1\right))} + \dfrac{1}{|a|^n}
8,587
\frac{(\sqrt{24})^2}{8^2} = \tfrac{24}{64} = 6/16
16,087
\frac{1}{1 + x} \cdot (x \cdot 6 + 17) = 7 \implies 6 \cdot x + 17 = 7 \cdot x + 7
5,988
y * y = |y|^2 > 4\Longrightarrow |y| \gt \sqrt{4} = 2
37,585
n!*n + n! = (n + 1)*n! = \left(n + 1\right)!
-11,768
16^{-\frac14} = (1/16)^{\frac14} = 1/2
30,788
e^y = 1 + y + y^2/2 + \cdots
-3,649
\frac{1}{q \cdot 7} \cdot 6 = \dfrac{6 / 7}{q} \cdot 1
15,881
i = j \implies j - i = 0
-9,236
-x*2*3*3*5 - 2*2*2*5 = 40 (-1) - x*90
14,838
\gamma\cdot \alpha = \alpha\cdot \gamma
27,847
b_1 b_2 + a_1 a_2 - a_1 b_2 - a_2 b_1 = (-b_2 + a_2) (a_1 - b_1)
21,386
3^{n + 2} = 3^n\cdot 3 \cdot 3
36,765
B^{-2.6}*B^4*B^7/B = B^{7.4}
50,822
0 = 0 = 1 + (-1) + 1 + (-1) + 1 + (-1)
42,436
100/10! = \tfrac{1}{36288}
16,214
\cos(f)\cdot \sin(g) + \sin(f)\cdot \cos(g) = \sin(g + f)
16,428
y^3 + (-1) = (4 + y)\times (y^2 - y\times 4 + 3) + 13\times ((-1) + y)
26,767
\cos(k\theta) = \cos(-k\theta)
-5,695
\tfrac{4}{4\cdot (k + 9)\cdot (1 + k)} = \frac{1/4\cdot 4}{(k + 9)\cdot \left(1 + k\right)}
20,795
n = \binom{x + n + 2 \cdot (-1)}{x + \left(-1\right)} = \binom{x + n + 3 \cdot (-1)}{x + 2 \cdot \left(-1\right)} + \binom{x + n + 3 \cdot (-1)}{x + (-1)}
-15,276
\frac{1}{d^8\cdot \frac{1}{x^{10}}}\cdot d = \dfrac{1}{\frac{1}{d}\cdot (\frac{d^4}{x^5})^2}
18,053
E(X_F) E(X_A) = E(X_F X_A)
17,830
\cos{\pi/4} = 1/(\sqrt{2}) = \frac{\sqrt{2}}{2}
17,276
n \cdot L \cdot Y + a \cdot L \cdot Q = (n \cdot Y + Q \cdot a) \cdot L
-19,686
14/9 = 2 \cdot 7/(9)
11,085
\dfrac{1}{2*5}30 + (-1) = 30/10 + (-1) = 3 + (-1) = 2
4,370
\frac{\mathrm{d}}{\mathrm{d}y} (y\cdot e^y) = y\cdot e^y + e^y = y\cdot e^y + e^y
22,644
|x|^{t + 2(-1)} x = \eta \Rightarrow x = \eta |\eta|^{\tfrac{2 - t}{t + (-1)}}
30,095
a_i \cdot N = a_i \cdot N
23,698
\dfrac{1}{6^3} \cdot {6 \choose 3} = \frac{1}{216} \cdot 20 = 5/54
-22,424
125^{\frac23} = (125^{\frac13})^2 = 5^2 = 5*5 = 25
54,050
4^{23} = 70368744177664
29,280
2\pi/5*1.25 = \frac{2\pi}{5}1*\tfrac{5}{4} = \pi/2
-9,122
-p\cdot 20 = -2\cdot 2\cdot 5 p
21,494
\frac{4 \cdot \dfrac15}{3 \cdot 1/6} = \frac{8}{5} = 1.6
21,385
x = \frac{1}{-(1 - 1/x) + 1}
27,975
C^2*C = C*C^2
21,530
\binom{k}{1} + 2*\binom{k}{2} = k^2
47,947
2^{40}=(2^{10})^4=1048576^2=1099511627776
-9,317
-x\cdot 35 + x^2\cdot 5 = -x\cdot 5\cdot 7 + x\cdot 5\cdot x
31,104
1328/2450 = 1 - \frac{1}{49}\cdot 33\cdot \frac{34}{50}
4,617
2*(3y - z) = 6y - 2z
22,867
\cos^2(x) = \frac{1+\cos(2x)}{2}
-30,034
z^{(-1) + \varepsilon} \varepsilon = \frac{\mathrm{d}}{\mathrm{d}z} z^\varepsilon
23,335
x^2 \cdot D^2 - 6 \cdot x \cdot D + 9 = \left(x \cdot D\right)^2 - 7 \cdot x \cdot D + 9 = (x \cdot D - 3.5)^2 - 3.25
5,283
0 + 0 + 1/2 = \dfrac{1}{2}
2,366
(x + 2)/((-1)\cdot x) = \frac{y}{(-1)\cdot (y + 4\cdot (-1))}\Longrightarrow 2\cdot x + 4 = y
-19,689
\frac{1}{8}\cdot 27 = 3\cdot 9/\left(8\right)
27,191
-a/b = -a/b = ((-1)\cdot a)/b = \frac{1}{\left(-1\right)\cdot b}\cdot a
32,424
56/825 = 0.4*\dfrac{8}{4 + 8}*0.4*\frac{8 + (-1)}{4 + 8 + (-1)}
9,045
\cos{3x} = \cos{x \cdot 3}
873
e^z = e^z = 1 + z + \frac{1}{2}z^2 + \dfrac{1}{6}z \cdot z \cdot z + \dots
15,632
-b + (b + (-1)) d = db - d - b
-6,250
\frac{4}{3 \times y + 9} = \frac{1}{3 \times (y + 3)} \times 4
9,105
1^5 + 2^5 + 3^5 + 4^5 + 1^7 + 2^7 + 3^7 + 4^7 = (4 + 1 + 2 + 3)^4\cdot 2
-6,228
\frac{3 \cdot y}{\left(y + (-1)\right) \cdot \left(4 + y\right)} \cdot 25/25 = \frac{75 \cdot y}{25 \cdot (\left(-1\right) + y) \cdot (y + 4)} \cdot 1
-11,935
6.208\cdot 0.001 = \frac{6.208}{1000}
38,454
|\left( 2, -4, 1\right) \cdot \left( -4, 5, -1\right)| = |-8 + 20 \cdot \left(-1\right) + (-1)| = 29
4,307
|x + (-1)|*2 = |-2*x + 2|
9,531
\dfrac{1}{1/b \cdot h} = b/h
29,995
2 \cdot 2^3/3 + \frac12 \cdot 2 \cdot 2 - \frac{14}{6} \cdot 1 = 5.3 + 2 - 2.3 = 5