id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
12,413 | (y + (-1)) (y^2 + y + 1) = y \cdot y \cdot y + (-1) |
21,318 | \frac{5!}{3} \cdot \dfrac{1}{2} = 20 |
33,381 | 3744 = 3796 + 52 \cdot \left(-1\right) |
21,040 | \lim_{t \to \infty} |2 \cdot (-1) + t|/t = \lim_{t \to \infty} \left(t + 2 \cdot (-1)\right)/t |
4,101 | (x + 1)\cdot (2\cdot (-1) - x^2 + x\cdot 2) = -x^3 + x^2 + 2\cdot (-1) |
-4,770 | \dfrac{15\cdot (-1) + 6\cdot y}{y^2 - y\cdot 5 + 4} = \frac{3}{4\cdot (-1) + y} + \frac{1}{(-1) + y}\cdot 3 |
7,818 | \left(c + b\right)\cdot a = a\cdot c + a\cdot b |
3,592 | \cos(30)\cdot \sin(C)\cdot H\cdot 2 = x_3 - x_1 \Rightarrow \sin(C)\cdot H = \frac{1}{3^{1 / 2}}\cdot (-x_1 + x_3) |
4 | x = E_1\cdot E_2 rightarrow E_2\cdot E_1 = x |
34,873 | {94 \choose 3} = 134044 |
50,878 | 4\cdot x = 3\cdot x + x \geq 1 + x |
2,156 | \sqrt{64}/(\sqrt{8}) = \sqrt{\dfrac18 \cdot 64} = \sqrt{8} = 2 \cdot \sqrt{2} |
39,178 | \left(\tan{2\cdot x} - \sin{4\cdot x} = 0 \implies \sin{x\cdot 4} = \tan{2\cdot x}\right) \implies \dfrac{\sin{2\cdot x}}{\cos{2\cdot x}} = \sin{x\cdot 4} |
18,092 | \sin^{26}(x) - \sin^{24}(x) = \sin\left(6 \cdot x + 4 \cdot x\right) \cdot \sin(6 \cdot x - 4 \cdot x) = \sin(2 \cdot x) \cdot \sin(10 \cdot x) |
25,422 | 3 = \frac{2!}{2!}2!/2! \binom{3}{2} |
-13,214 | -16.8/\left(-0.21\right) = 80 |
1,999 | {l + q + (-1) \choose l} = {l + q + (-1) \choose q + \left(-1\right)} |
4,244 | \left|{E \cdot E^T}\right| = 0 = \left|{E^T \cdot E}\right| |
23,492 | 0 = \cos(\tfrac{1}{2^{0 + 1}}*\pi) |
19,116 | \frac{2}{x + 2} = \frac{2}{x + (-1) + 3} = \frac{2}{3} \times \frac{2}{(x + (-1))/3 + 1} |
34,298 | 2 \cdot 3 + 2 = 8 |
6,357 | 3\cdot y^2 - 7\cdot y + 2 = \left(y\cdot 3 + (-1)\right)\cdot (2\cdot (-1) + y) |
9,107 | \frac{l^2 + 9*(-1)}{4*(-1) + l} = \frac{7}{l + 4*\left(-1\right)} + l + 4 |
39,721 | \frac12*|-1| = 1/2 |
-2,511 | 7^{1/2} = 7^{1/2} \cdot \left(3 + 2 \cdot (-1)\right) |
29,273 | A^2\cdot B^2 = (A\cdot B)^2 |
5,868 | 3/4\cdot \tfrac{2}{5}\cdot \frac{4}{7}\cdot 7/10\cdot \frac69\cdot 5/8\cdot 3/6 = \frac{3\cdot 7\cdot 6\cdot 5\cdot 4\cdot 3\cdot 2}{4\cdot 10\cdot 9\cdot 8\cdot 7\cdot 6\cdot 5} |
12,132 | \sin(\dfrac{3}{2} \cdot \pi - E) = -\cos(E) |
21,633 | \dfrac14*2 / 5 = \dfrac{1}{10} |
8,687 | \dfrac{14}{12} = 7/6 |
-26,046 | (d - h)\cdot (h + d) = -h^2 + d^2 |
14,332 | \tfrac{a - b}{a + b} = -2 \cdot \frac{b}{a + b} + 1 |
13,323 | 1 - \frac{15!*D_{15}}{15!^2}*1 = 1 - D_{15}/15! |
-9,154 | -15 \cdot z^3 = -z \cdot z \cdot 3 \cdot 5 \cdot z |
27,375 | \overline{q} + \overline{x} = \overline{q + x} |
-10,609 | \frac{1}{12*x + 8}*12 = \frac{3}{2 + 3*x}*4/4 |
-20,344 | \frac55 \cdot \frac{\left(-1\right) + 5 \cdot x}{4 \cdot x} = \tfrac{1}{x \cdot 20} \cdot \left(x \cdot 25 + 5 \cdot (-1)\right) |
-9,156 | -a\times 7\times 7\times a + 2\times 5\times 7\times a = -a^2\times 49 + a\times 70 |
14,637 | \dfrac{1}{|a|^n + (-1)} = \frac{1}{|a|^n\cdot (|a|^n + \left(-1\right))} + \dfrac{1}{|a|^n} |
8,587 | \frac{(\sqrt{24})^2}{8^2} = \tfrac{24}{64} = 6/16 |
16,087 | \frac{1}{1 + x} \cdot (x \cdot 6 + 17) = 7 \implies 6 \cdot x + 17 = 7 \cdot x + 7 |
5,988 | y * y = |y|^2 > 4\Longrightarrow |y| \gt \sqrt{4} = 2 |
37,585 | n!*n + n! = (n + 1)*n! = \left(n + 1\right)! |
-11,768 | 16^{-\frac14} = (1/16)^{\frac14} = 1/2 |
30,788 | e^y = 1 + y + y^2/2 + \cdots |
-3,649 | \frac{1}{q \cdot 7} \cdot 6 = \dfrac{6 / 7}{q} \cdot 1 |
15,881 | i = j \implies j - i = 0 |
-9,236 | -x*2*3*3*5 - 2*2*2*5 = 40 (-1) - x*90 |
14,838 | \gamma\cdot \alpha = \alpha\cdot \gamma |
27,847 | b_1 b_2 + a_1 a_2 - a_1 b_2 - a_2 b_1 = (-b_2 + a_2) (a_1 - b_1) |
21,386 | 3^{n + 2} = 3^n\cdot 3 \cdot 3 |
36,765 | B^{-2.6}*B^4*B^7/B = B^{7.4} |
50,822 | 0 = 0 = 1 + (-1) + 1 + (-1) + 1 + (-1) |
42,436 | 100/10! = \tfrac{1}{36288} |
16,214 | \cos(f)\cdot \sin(g) + \sin(f)\cdot \cos(g) = \sin(g + f) |
16,428 | y^3 + (-1) = (4 + y)\times (y^2 - y\times 4 + 3) + 13\times ((-1) + y) |
26,767 | \cos(k\theta) = \cos(-k\theta) |
-5,695 | \tfrac{4}{4\cdot (k + 9)\cdot (1 + k)} = \frac{1/4\cdot 4}{(k + 9)\cdot \left(1 + k\right)} |
20,795 | n = \binom{x + n + 2 \cdot (-1)}{x + \left(-1\right)} = \binom{x + n + 3 \cdot (-1)}{x + 2 \cdot \left(-1\right)} + \binom{x + n + 3 \cdot (-1)}{x + (-1)} |
-15,276 | \frac{1}{d^8\cdot \frac{1}{x^{10}}}\cdot d = \dfrac{1}{\frac{1}{d}\cdot (\frac{d^4}{x^5})^2} |
18,053 | E(X_F) E(X_A) = E(X_F X_A) |
17,830 | \cos{\pi/4} = 1/(\sqrt{2}) = \frac{\sqrt{2}}{2} |
17,276 | n \cdot L \cdot Y + a \cdot L \cdot Q = (n \cdot Y + Q \cdot a) \cdot L |
-19,686 | 14/9 = 2 \cdot 7/(9) |
11,085 | \dfrac{1}{2*5}30 + (-1) = 30/10 + (-1) = 3 + (-1) = 2 |
4,370 | \frac{\mathrm{d}}{\mathrm{d}y} (y\cdot e^y) = y\cdot e^y + e^y = y\cdot e^y + e^y |
22,644 | |x|^{t + 2(-1)} x = \eta \Rightarrow x = \eta |\eta|^{\tfrac{2 - t}{t + (-1)}} |
30,095 | a_i \cdot N = a_i \cdot N |
23,698 | \dfrac{1}{6^3} \cdot {6 \choose 3} = \frac{1}{216} \cdot 20 = 5/54 |
-22,424 | 125^{\frac23} = (125^{\frac13})^2 = 5^2 = 5*5 = 25 |
54,050 | 4^{23} = 70368744177664 |
29,280 | 2\pi/5*1.25 = \frac{2\pi}{5}1*\tfrac{5}{4} = \pi/2 |
-9,122 | -p\cdot 20 = -2\cdot 2\cdot 5 p |
21,494 | \frac{4 \cdot \dfrac15}{3 \cdot 1/6} = \frac{8}{5} = 1.6 |
21,385 | x = \frac{1}{-(1 - 1/x) + 1} |
27,975 | C^2*C = C*C^2 |
21,530 | \binom{k}{1} + 2*\binom{k}{2} = k^2 |
47,947 | 2^{40}=(2^{10})^4=1048576^2=1099511627776 |
-9,317 | -x\cdot 35 + x^2\cdot 5 = -x\cdot 5\cdot 7 + x\cdot 5\cdot x |
31,104 | 1328/2450 = 1 - \frac{1}{49}\cdot 33\cdot \frac{34}{50} |
4,617 | 2*(3y - z) = 6y - 2z |
22,867 | \cos^2(x) = \frac{1+\cos(2x)}{2} |
-30,034 | z^{(-1) + \varepsilon} \varepsilon = \frac{\mathrm{d}}{\mathrm{d}z} z^\varepsilon |
23,335 | x^2 \cdot D^2 - 6 \cdot x \cdot D + 9 = \left(x \cdot D\right)^2 - 7 \cdot x \cdot D + 9 = (x \cdot D - 3.5)^2 - 3.25 |
5,283 | 0 + 0 + 1/2 = \dfrac{1}{2} |
2,366 | (x + 2)/((-1)\cdot x) = \frac{y}{(-1)\cdot (y + 4\cdot (-1))}\Longrightarrow 2\cdot x + 4 = y |
-19,689 | \frac{1}{8}\cdot 27 = 3\cdot 9/\left(8\right) |
27,191 | -a/b = -a/b = ((-1)\cdot a)/b = \frac{1}{\left(-1\right)\cdot b}\cdot a |
32,424 | 56/825 = 0.4*\dfrac{8}{4 + 8}*0.4*\frac{8 + (-1)}{4 + 8 + (-1)} |
9,045 | \cos{3x} = \cos{x \cdot 3} |
873 | e^z = e^z = 1 + z + \frac{1}{2}z^2 + \dfrac{1}{6}z \cdot z \cdot z + \dots |
15,632 | -b + (b + (-1)) d = db - d - b |
-6,250 | \frac{4}{3 \times y + 9} = \frac{1}{3 \times (y + 3)} \times 4 |
9,105 | 1^5 + 2^5 + 3^5 + 4^5 + 1^7 + 2^7 + 3^7 + 4^7 = (4 + 1 + 2 + 3)^4\cdot 2 |
-6,228 | \frac{3 \cdot y}{\left(y + (-1)\right) \cdot \left(4 + y\right)} \cdot 25/25 = \frac{75 \cdot y}{25 \cdot (\left(-1\right) + y) \cdot (y + 4)} \cdot 1 |
-11,935 | 6.208\cdot 0.001 = \frac{6.208}{1000} |
38,454 | |\left( 2, -4, 1\right) \cdot \left( -4, 5, -1\right)| = |-8 + 20 \cdot \left(-1\right) + (-1)| = 29 |
4,307 | |x + (-1)|*2 = |-2*x + 2| |
9,531 | \dfrac{1}{1/b \cdot h} = b/h |
29,995 | 2 \cdot 2^3/3 + \frac12 \cdot 2 \cdot 2 - \frac{14}{6} \cdot 1 = 5.3 + 2 - 2.3 = 5 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.