id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
-10,471 | \frac{12}{12} \cdot (-\frac{(-1) + 3 \cdot y}{2 + 5 \cdot y}) = -\tfrac{y \cdot 36 + 12 \cdot (-1)}{60 \cdot y + 24} |
4,812 | \sum_{l=1}^\infty \left(2l + a_l\right)^2 = \sum_{l=1}^\infty (a_l * a_l + 4a_l l + 4l^2) |
12,330 | 5 - 0 \cdot 3 + 9/3 = \frac93 + 5 - 0 \cdot 3 |
31,662 | \dfrac{9\cdot \frac{1}{10}}{2^5} + 1/10 = 41/320 |
1,526 | \dfrac{4}{2 \cdot x} = -2 \cdot x = -2 \cdot e^{\frac{\pi}{2} \cdot x} = 2 \cdot e^{((-1) \cdot x \cdot \pi)/2} |
-4,366 | l\cdot 7/6 = \dfrac{7\cdot l}{6} |
5,740 | d^x = x\Longrightarrow d = x^{1/x} |
1,097 | 0 = f \cdot z^2 + z \cdot d + h \Rightarrow z^2 + \frac{d}{f} \cdot z = -h/f |
239 | \frac{10!}{{5 \choose 2}}\cdot \frac{1}{1!\cdot 1!\cdot 1!\cdot 3!\cdot 2!\cdot 2!} = 15120 |
35,544 | \dfrac{1}{E^{\dfrac12}} = E^{-\frac12} |
22,844 | -\rho^2 + t t = (-\rho + t) (t + \rho) |
-23,123 | -\frac12 \cdot 3 = -3/2 |
21,084 | |\dfrac1D| = \frac{1}{|D|} |
16,456 | 8! \cdot {10 \choose 2} = 10!/2! |
30,971 | 3*1/4/4 = \frac{3}{16} |
-12,422 | \dfrac{1}{3} \cdot 132 = 44 |
9,892 | \frac{-z_2 + z_1}{z_2 \cdot z_1} = 1/(z_2) - 1/\left(z_1\right) |
-21,062 | \frac{1}{2} \cdot 2 \cdot \frac24 = 4/8 |
16,653 | 1 = -3032\cdot 14995 + (-14995\cdot 2 + 37469)\cdot 6079 |
13,912 | \frac{1}{12} \cdot \left(2^2 + \left(-1\right)\right) = 0.25 |
9,948 | \frac{\partial}{\partial c} (b\times a) = 1000\times h + 100\times c + 10\times b + a = 9\times \left(1000\times a + 100\times b + 10\times c + h\right) = 9000\times a + 900\times b + 90\times c + 9\times h |
-13,198 | -3.6 = -\dfrac{2.52}{0.7} |
-730 | (e^{\frac{1}{4} \cdot \pi \cdot 7 \cdot i})^{15} = e^{15 \cdot 7 \cdot i \cdot \pi/4} |
22,313 | a'*d + a*b*c + a'*c = c*b + b*c*a + a'*c + d*a' |
19,863 | 3 \times 2/2 = 3 |
-17,041 | -5 = -5\cdot \left(-5\cdot y\right) - 40 = 25\cdot y - 40 = 25\cdot y + 40\cdot (-1) |
-20,569 | \frac188 \frac{5\left(-1\right) - 7S}{S \cdot 9} = \tfrac{1}{S \cdot 72}(40 (-1) - 56 S) |
13,810 | V_0 S_0 = S_0 V_0 |
18,362 | g + 3(-1) = -(-g + 3) |
7,278 | 1 = 3^l\cdot 3^k \Rightarrow k = l = 0 |
20,825 | x + \frac13 = \left(3 x + 1\right)/3 |
-27,515 | a \cdot a \cdot 3 \cdot 2 \cdot 2 = 12 \cdot a^2 |
26,565 | 20648 = 22^3 + 10^3 + 10^3 + 20 \cdot 20 \cdot 20 |
-7,098 | 2/5\cdot 3/6\cdot \tfrac47/4 = \tfrac{1}{35} |
43,272 | \binom{15}{2} = \binom{13 + 3 + (-1)}{(-1) + 3} |
-23,895 | \dfrac{22}{5 + 6} = \frac{22}{11} = \dfrac{22}{11} = 2 |
28,539 | 5^{6*n + 2} = 5^{6*n + 3 + (-1)} = \frac{1}{5}*5^{3*(2*n + 1)} |
20,159 | y^6 + (-1) = (1 + y^4 + y^2) (y \cdot y + (-1)) |
-26,137 | -\dfrac32 - -3/1 = -1.5 + 3 = 1.5 |
22,519 | \int f\,\mathrm{d}y \Rightarrow \int f\,\mathrm{d}y |
-25,294 | d/dx \frac{1}{x^6} = -\tfrac{1}{x^7}\cdot 6 |
6,877 | 0/127 = \frac{1}{127}\cdot 0 |
-20,446 | -\frac{3}{-27} = ((-3)\cdot 1/\left(-3\right))/9 |
4,737 | h^2 + g \cdot g = \left(h + g\right)^2 - 2 \cdot h \cdot g |
-26,647 | 4 + 121\cdot G^4 - G^2\cdot 44 = (G^2\cdot 11 + 2\cdot (-1))^2 |
36,649 | \sin(x) = x - \dfrac{x^3}{3!} + x^5/5! \pm \cdots \approx x |
-1,492 | \frac{1}{12}45 = \frac{45}{12*\frac{1}{3}}1/3 = \frac{15}{4} |
-6,731 | 10^{-1} + \frac{1}{100} \cdot 8 = \frac{1}{100} \cdot 8 + \frac{1}{100} \cdot 10 |
-614 | -28\cdot \pi + \pi\cdot 85/3 = \frac{\pi}{3} |
-12,021 | 5/8 = \dfrac{s}{16 \cdot \pi} \cdot 16 \cdot \pi = s |
-7,528 | (a + b) \cdot (a - b) = a^2 - b^2 |
-24,617 | 9*4 + 8*\frac{1}{10}20 = 9*4 + 8*2 = 36 + 8*2 = 36 + 16 = 52 |
3,717 | \frac{\frac{2}{3}}{1/3} \cdot 1 = 2 |
2,103 | g^5 + g + (-1) = g^5 + g^2 - g^2 + g + (-1) = \left(g \cdot g - g + 1\right) (g^3 + g^2 + (-1)) |
1,976 | 1 - \left(1 - p_1\right)\cdot (1 - p_2) = p_1 + p_2 - p_1\cdot p_2 |
-3,788 | \dfrac{2}{3*r * r} = \frac{2}{r^2}*1/3 |
3,122 | \sqrt{17}*(10 + 12)/2 = \sqrt{17}*11 |
18,369 | (2 - 2 n) \left(1 - r*((-1) + n)\right) r^{3 (-1) + n} = (1 - \left(n + (-1)\right) r) r^{3 (-1) + n} (1 - r) |
-5,046 | 2.8\cdot 10 = 2.8\cdot 10/100 = \frac{2.8}{10} |
18,406 | z * z + 1 = 1 + \frac{dz}{dt}\Longrightarrow \frac{dz}{dt} = z^2 |
14,059 | (61 - 28\cdot 3^{1/2})/37 = \frac{7 - 2\cdot 3^{1/2}}{2\cdot 3^{1/2} + 7} |
39,577 | e\cdot A = e\cdot A |
-1,336 | -\frac137*3/8 = \frac{3 / 8}{\left(-1\right)*3*1/7}1 |
5,201 | \frac16 \cdot 3/6 = \frac{3}{36} |
-9,113 | \frac{84.5}{100} = 84.5\% |
30,622 | 90 = 100 + 10 \cdot \left(-1\right) |
11,936 | 1 - 2*\cos(z) + (-1) = 2 - 2*\cos(z) = 2*(1 - \cos(z)) |
-22,955 | \frac{1}{24} \cdot 18 = \frac{3 \cdot 6}{6 \cdot 4} |
-1,990 | \pi\cdot \frac{1}{4}\cdot 5 = 3/2\cdot \pi - \pi/4 |
31,999 | \frac{m}{s}\times m\times s = m^2 = \frac{m^3}{s} |
13,188 | z \cdot z - i \cdot 3 \cdot z - i \cdot 3 \cdot z + 3 \cdot i \cdot i \cdot 3 = (-3 \cdot i + z) \cdot \left(-i \cdot 3 + z\right) |
18,687 | 1 - 1/x = \dfrac{1}{-\frac{1}{-x + 1} + 1} |
-5,540 | \frac{5}{3 \cdot r + 6} = \frac{5}{3 \cdot (r + 2)} |
-10,569 | 3/(y*75) = 3*1/3/(y*25) |
-17,677 | 21 + 29 = 50 |
12,592 | E\{a+b\} = E\{a\}+E\{b\} |
-5,202 | 10^{3 + 1}*8.4 = 10^4*8.4 |
-18,783 | y = \frac{y}{4} \times 4 |
-621 | \pi/3 = -\pi\cdot 8 + \pi \dfrac{25}{3} |
-10,298 | 2/2*\frac{1}{k*2} 8 = \frac{16}{4 k} |
5,547 | (3 + x) \cdot (3 + x) - (x + 2)^2 = 5 + 2\cdot x |
-10,703 | \tfrac144*3/t = 12/\left(4t\right) |
23,536 | -u + u + w - w = u + w - w + u |
17,529 | {(-1) + n + q \choose q} = {n + q + (-1) \choose (-1) + n} |
4,563 | \dfrac{1}{(-a/z + 1)^2 \cdot z^2} = \dfrac{1}{(z - a)^2} |
-499 | \left(e^{\frac{\pi*i}{4}}\right)^{17} = e^{17*\dfrac{\pi*i}{4}} |
10,999 | \int \left(1 - e^{-y}\right) \cdot e^{e^y}\,\mathrm{d}y = \int (e^y + (-1)) \cdot e^{-y} \cdot e^{e^y}\,\mathrm{d}y = \int (e^y + (-1)) \cdot e^{e^y - y}\,\mathrm{d}y |
24,391 | c^2 - g^2 = (c - g) (c + g) |
9,579 | 5/27 = 6/27*\dfrac{5}{6} |
953 | \left((\left(-1\right) + b^2)^{1/2} = -b i\Longrightarrow -b b = (-1) + b^2\right)\Longrightarrow b = -\dfrac{1}{2^{1/2}} |
-2,677 | \sqrt{6}*(2 + 4(-1) + 3) = \sqrt{6} |
34,812 | \sqrt{15} = \sqrt{5} \sqrt{3} |
14,882 | 15 = \binom{7 + 0\times \left(-1\right) + (-1)}{3 + (-1)}\times \binom{3}{0} |
31,486 | \dfrac{1}{C K} = \frac{1}{K C} = K C = C K |
36,427 | (1-p)^4p + (1-p)^5 = (1-p)^4(p + 1 - p) = (1-p)^4 |
711 | \sqrt{\frac{1 + t}{1 - t}} = \frac{1 + t}{\sqrt{1 - t^2}} = (1 + t) E[t] |
-28,922 | 7/\left(7\cdot 1/20\right) = 7\cdot \tfrac{20}{7} = 20 |
-26,176 | \frac14*6 + 3*7 = 1.5 + 21 = 22.5 |
21,098 | 3\cdot \frac{\sin{3\cdot x}}{x\cdot 3} = \frac{1}{x}\cdot \sin{x\cdot 3} |
-2,345 | 9/20 - 3/20 = \frac{1}{20}*6 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.