id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
28,656 | z^2 + z + 1 = (1/2 + z)^2 + 3/4 |
19,436 | ( a'^2*4 + b'^2*8 + 10, 20) = ( 5 + 2 a'^2 + 4 b'^2, 10)*2 |
-6,020 | \frac{2}{2 \cdot \left(y + 8 \cdot (-1)\right)} = \frac{2}{y \cdot 2 + 16 \cdot (-1)} |
31,477 | (2*n)^2 + (2 + n*2)^2 + \left(n*2 + 4\right)^2 = (n^2*3 + n*6 + 5)*4 |
7,715 | A \cdot t^{A + (-1)} = \frac{\partial}{\partial t} t^A |
-23,475 | \frac{5}{14} = 5\cdot 1/7/2 |
5,135 | \frac{1}{3}\times 392 + 1120/3 = \tfrac13\times 1512 = 504 |
10,881 | \frac{60.0}{5} = 12.0 |
-3,188 | \sqrt{16*5} - \sqrt{9*5} = -\sqrt{45} + \sqrt{80} |
22,109 | \frac1b\cdot c = \frac{c}{b} |
26,413 | 153 = \frac{17*18}{2} |
2,301 | (8\cdot l)^2/2 = 32\cdot l \cdot l |
23,245 | 5278 = 13\cdot \frac{29}{2}\cdot 28 |
-1,581 | \pi/6 + \pi*\frac{23}{12} = \frac{1}{12}*25*\pi |
18,042 | (1 + \sqrt{-5})\cdot (1 - \sqrt{-5}) = 6 |
-20,458 | -9/2*\frac{-l + 1}{-l + 1} = \frac{9*(-1) + 9*l}{2 - 2*l} |
13,945 | b^y = \left(\frac{1}{b}\right)^{-y} = (\frac{1}{b})^{-y} |
8,724 | \sin(2\cdot q) = 2\cdot \sin(q)\cdot \cos\left(q\right) |
1,584 | n = 316^2 - 3^6 \cdot 17 = 316^2 - 3^4 \cdot 3^2 \cdot 17 = 316 \cdot 316 - 3^4 \cdot (296^2 - n) |
26,938 | (-1) + y\cdot 2/z = \dfrac1z (-z + y\cdot 2) |
-20,911 | \left(10\cdot p + 10\right)/(p\cdot \left(-60\right)) = (1 + p)/(p\cdot (-6))\cdot 10/10 |
4,767 | n + 4 \cdot (-1) = 1\Longrightarrow 5 = n |
-716 | -\pi \cdot 24 + \pi \cdot 25 = \pi |
-4,336 | \frac{1}{2s * s} = \dfrac{1}{2s^2} |
-25,784 | \dfrac{11}{4}\frac{1}{12} = 11/48 |
19,418 | 1/(1/(1/25)) = 1/25*1^{-1}/1 = 1/25 |
3,739 | -\frac{1}{100} + \frac{1}{10} + \frac{1}{10} = \frac{19}{100} |
6,934 | t^{(-1) + a}*t = t^a |
11,325 | \frac15 = 1/(6*\frac{5}{6}) |
-1,884 | -π \dfrac74 + π\cdot 3/2 = -π/4 |
3,037 | \frac{\sin x^5}{x} = x^4 \frac{\sin x^5}{x^5} \to 0 \cdot 1 = 0 |
-29,556 | \dfrac{1}{x}\cdot (6\cdot x^2 - x\cdot 4 + 3\cdot \left(-1\right)) = -3/x + \dfrac{x^2\cdot 6}{x} - \dfrac{4\cdot x}{x}\cdot 1 |
14,959 | |-x \cdot I + X \cdot B| = |-I \cdot x + B \cdot X| |
-25,809 | 5\cdot 1/4/10 = \frac{5}{40} |
9,042 | 9 = -4\times p \Rightarrow -\dfrac{9}{4} = p |
-13,445 | \frac{6}{10 + 4 \cdot (-1)} = \frac{1}{6} \cdot 6 = \dfrac16 \cdot 6 = 1 |
8,066 | 3^2 + 4^2 + 5^2 = 5^2 + 5^2 = 2 \cdot 5^2 |
-1,162 | \frac{1}{6 \cdot \dfrac15} \cdot (\tfrac19 \cdot \left(-5\right)) = 5/6 \cdot (-\tfrac{5}{9}) |
12,342 | 2*y'*z + x*2 = (-x + 2*x * x + 2*z * z)*2*((-1) + 4*x + 4*y'*z) |
10,935 | \cot(\frac{1}{2}*\pi + x) = -\tan\left(x\right) |
29,697 | 13 = -3 \cdot 6 + 31 |
31,879 | 2^{2^2} =16 |
10,912 | 2*135689^2 = 39^5 + 75^5 + 128^5 |
15,835 | \pi + \tan^{-1}{-1} = \pi - \frac{\pi}{4} = \frac{3}{4} \cdot \pi |
28,045 | 0.5441 = \left(1 - 0.01\right)*0.51 + 0.08*0.49 |
-30,556 | -200/(-100) = -\dfrac{100}{-50} = -\frac{50}{-25} = 2 |
18,033 | N = \sqrt{(-N)^2} = \sqrt{-N}*\sqrt{-N} |
20,276 | x\cdot y^2\cdot y = x\cdot y^3 |
1,978 | \cos\left(\tfrac32\pi\right) = 0 |
4,860 | (120 + 20)*(x + 3*\left(-1\right)) = 140*(x + 3*(-1)) = 140*x + 420*\left(-1\right) |
4,000 | x^3 + 8\left(-1\right) = (x^2 + 2x + 4) (x + 2(-1)) |
12,848 | \sqrt{b^2 - 4\cdot c} = i\cdot \sqrt{4\cdot c - b \cdot b} = i\cdot \sqrt{\|b^2 - 4\cdot c\|} |
-7,019 | 4/35 = \frac{1}{5} \times 2 \times 3/6 \times 4/7 |
-5,709 | \frac{4}{4n + 36} = \dfrac{4}{4(n + 9)} |
-4,903 | 3.65\cdot 10 = \dfrac{3.65\cdot 10}{100} = \dfrac{3.65}{10} |
30,049 | \cos\left(\operatorname{acos}(t)\right) = t |
-6,344 | \dfrac{4}{2 (r + 8) (r + 6)} = \dfrac{1}{(6 + r) \left(r + 8\right)} 2*\frac{2}{2} |
-16,594 | 9\sqrt{25*7} = \sqrt{175}*9 |
10,672 | 1 - \sin^2\left(\frac{t}{2}\right)\cdot 2 = \cos(t) |
20,629 | 3^2 = 11 + 2*\left(-1\right) |
6,852 | e^{-i\cdot y} = \cos\left(-y\right) + i\cdot \sin(-y) = \cos(y) - i\cdot \sin\left(y\right) |
-5,862 | \dfrac{3}{10 + t \cdot 5} = \dfrac{3}{(t + 2) \cdot 5} |
24,647 | \left(\pi/2\right) \left(\pi/2\right)/2 = \pi \pi/8 |
17,425 | m^2 - m + \frac{1}{1 + m}\cdot m = \frac{m^3}{1 + m} |
1,242 | l*x + n'*x = \left(l + n'\right)*x |
-25,073 | \sec^2(4x) \tan(4x)*8 = \frac{\mathrm{d}}{\mathrm{d}x} \sec^2\left(4x\right) |
34,010 | \int (-a)\,\mathrm{d}z = -\int a\,\mathrm{d}z |
5,442 | 63 = (-1) + 4 \cdot 4 \cdot 4 |
31,404 | \tan(x + π) = \tan\left(x\right) |
14,710 | (y^T Ay)^T = y^T A^T y = -y^T Ay |
7,280 | 0 = (1 - z)\cdot z = z - z^2 |
-1,415 | \frac{7}{1} \cdot \frac94 = 1/4 \cdot 9/(1/7) |
22,503 | \cos^2(x) = 1 - \sin^2(x) > 1 - x^2 |
35,517 | (1 + p + (-1))^n = p^n |
15,145 | (2\cdot (-1) + n)! = (n + 2\cdot (-1))\cdot (3\cdot (-1) + n)\cdot (n + 4\cdot (-1))! |
10,944 | \left((2 + i)\times \left(i + 1\right)\times (i + 3)\times ...\times (x + 2\times (-1))\times (x + (-1))\times x\right)^{-1} = \frac{1}{x!}\times i! |
9,458 | \sin(x) = \frac{1}{1 + \frac{1}{2 \cdot 3 - x^2 + \dotsm} \cdot x^2} \cdot x |
8,666 | \cos(2 p) = 2 \cos^2\left(p\right) + (-1) = 1 - 2 \sin^2(p) |
33,921 | 216 + x^3*125 = 6^3 + (5*x)^3 |
21,435 | KtY = Yt K |
42,157 | |\varphi - y| = |-\varphi + y| |
29,238 | \dfrac{1}{l^{2 p}} (1 + l) = \frac{1}{l^{p*2}} + \dfrac{l}{l^{p*2}} |
29,022 | u^2 + w^2*3 = (-w + u) * (-w + u) + (u - w)*2w + (w*2) * (w*2) |
33,856 | h = \frac{h\cdot 2}{2} |
12,887 | -4/(-1) + A + 5 = \frac{(2 + 7)*(2 + 5*(-1))}{1*(2*(-1) + 1)}\Longrightarrow A = 18 |
14,857 | \binom{3}{1} \binom{3}{2} \binom{5}{2} \binom{2}{1} = 180 |
-22,034 | \frac{1}{15}*24 = 8/5 |
-24,186 | 7\cdot \left(5 + 7\right) = 7\cdot 12 = 84 |
-24,261 | \frac{126}{9 + 5} = 126/14 = \dfrac{126}{14} = 9 |
14,931 | Y = Z \cdot R \Rightarrow \frac{dY}{dR} = R \cdot \frac{dZ}{dR} + Z |
14,282 | \sin\left(2 \cdot A\right) = 2 \cdot \sin(A) \cdot \cos(A) |
-507 | (e^{\frac{3}{4} \cdot \pi \cdot i})^{14} = e^{14 \cdot \frac34 \cdot \pi \cdot i} |
25,404 | 1 + 1 + 1 + \ldots + 1 + 1 = m = m |
21,482 | \frac{\left(-2\right)^l}{3^{1 + l}} = (-\frac23)^l/3 |
21,920 | 1 + (2*1 + 1*2) + (3*1 + 2*2+1*3) + (1*2 + 2*3 + 3*2 + 2*1) + (1*1 + 2*2 + 3*3 + 2*2 + 1*1)+ (1*2 + 2*3 + 3*2 + 2*1) + (3*1 + 2*2+1*3) + (2*1 + 1*2)+1 = 1+4 + (1+0) + (1+6)+ (1+9) + (1+6) +(1+0) + 4 +1 = 36 |
25,105 | \cos(3 \cdot z) = \cos(z + 2 \cdot z) = \cos(z) \cdot \cos(2 \cdot z) - \sin(z) \cdot \sin(2 \cdot z) |
4,082 | 0 = (1 - 1)/2 |
-3,788 | \dfrac{2*\frac13}{s^2} = \tfrac{2}{s^2*3} |
22,442 | 400/375*100/80*120 = 160 |
14,217 | n*(m + 1) = nm + n |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.