id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
27,071 | (\frac{1}{2} + z)^2 = z \cdot z + z + 1/4 |
43,548 | 4! \cdot 4! \cdot 2 = 4! \cdot 4! + 4! \cdot 4! |
40,845 | 1.5 = \frac{1}{4}\cdot 6 |
15,972 | x - b + c - x + b = -x + b\Longrightarrow b - x = c |
-3,217 | 9\cdot \sqrt{13} = \sqrt{13}\cdot \left(5 + 4\right) |
14,578 | \left(a + 4\left(-1\right)\right) * \left(a + 4\left(-1\right)\right) + b * b = a^2 - 8a + 16 + b^2 = a^2 + b^2 |
25,393 | (k + 1)^2 - k^2 = 1 + 2*k |
8,598 | d^2\cdot d = d^3 |
-11,567 | -11 - i*3 = -1 + 10 (-1) - 3i |
32,126 | 3 \cdot s - s^2 \cdot 3 + s^2 \cdot s = s^3 + s \cdot 2 - s^2 + s - 2 \cdot s^2 |
-3,719 | \dfrac{12 \times r}{6 \times r^2} = 12/6 \times \frac{r}{r \times r} |
22,970 | 0 = (4 \cdot \left(-1\right) + x^2 - 3 \cdot x) \cdot 2\Longrightarrow 0 = 4 \cdot (-1) + x^2 - 3 \cdot x |
-20,521 | \dfrac12\cdot 1 = \frac{x + 7}{14 + 2\cdot x} |
-6,139 | \frac{3\cdot a}{a^2 + a + 12\cdot (-1)} = \frac{3\cdot a}{\left(a + 4\right)\cdot (3\cdot (-1) + a)} |
-6,168 | \dfrac{2}{(x + 4(-1))*4} = \dfrac{2}{16 (-1) + x*4} |
-17,926 | 30 + 35 = 65 |
32,970 | \left(0, \infty\right) = (0, 1) |
18,201 | {x \choose -s + x} = {x \choose s} |
9,339 | R < -x \implies -R \gt x |
39 | 1 + \frac{1}{47}\cdot 24 = \dfrac{1}{47}\cdot 71 |
4,416 | \tfrac{2\left(q + 263\right)}{2q + \left(-1\right)} = \dfrac{1}{2q + \left(-1\right)}(2q + 526) = 1 + \frac{1}{2q + (-1)}527 |
24,017 | 19/27 = 1/27 + \tfrac{12}{27} + \frac{6}{27} |
-2,979 | (4 + (-1) + 2*(-1))*\sqrt{7} = \sqrt{7} |
6,773 | \cos(6*x) = \cos\left(x + 5*x\right) |
19,023 | 4\times 13/(52\times 52) = 1/52 |
-19,719 | \dfrac{8 \times 5}{9 \times 1} = \dfrac{40}{9} |
14,305 | 1 - \frac{1 - A}{1 - B} = \frac{1}{1 - B}*(1 - B - 1 - A) = \tfrac{1}{1 - B}*(A - B) |
18,056 | \frac32 = (l_2 - l_1 + 1)/(l_1) = \frac{1}{l_1}\cdot (l_2 + 1) + (-1) |
47,150 | 30\times 2 + L = 60 + L |
213 | -w \cdot w + (w + 1)^2 = w\cdot 2 + 1 |
32,460 | 30 = (-283059965)^3 + 2220422932^3 + (-2218888517) \cdot (-2218888517) \cdot (-2218888517) |
-9,242 | -13\cdot 3\cdot 3 + x\cdot 3\cdot 3\cdot 5 = 117\cdot (-1) + x\cdot 45 |
12,319 | f^{m + (-1)}\cdot f = f^m |
-26 | -29 = 6*(-1) - 23 |
-1,869 | \frac{π}{12} - π \cdot 11/12 = -π \cdot 5/6 |
2,452 | \cos(x + x) = \cos{x\cdot 2} |
4,099 | 0.75 = 3/4 = \frac{1}{4} 3 |
27,040 | \left(x + K\right) (x - K) = x - K^2 = (x - K) (x + K) |
9,029 | z_1^2 + 2*z_1*z_2 + z_2^2 = (z_2 + z_1)^2 |
-6,990 | 4/14 \cdot \frac{6}{13} = 12/91 |
-11,636 | -5 + i \cdot 27 = i \cdot 27 - 10 + 5 |
-14,669 | 87 = \dfrac14\cdot 348 |
22,957 | \mathbb{E}(X^2) = \mathbb{E}(X) \cdot \mathbb{E}(X) + \mathbb{Var}(X) |
16,860 | 2 \cdot \int\limits_0^\infty \ldots\,dz = \int_{-\infty}^\infty \ldots\,dz |
13 | 75/216 = 3/6 \cdot (\dfrac56)^2 |
30,239 | \frac{x\cdot g}{h} = g\cdot \dfrac1h\cdot x |
28,520 | 1 + y + y^2 + \dots*y^{n + (-1)} = \dfrac{1 - y^n}{1 - y} = \dfrac{1}{1 - y} - \frac{1}{1 - y}*y^n |
-9,634 | 63\% = \dfrac{1}{100}*62.5 = \frac58 |
21,816 | 99*y = 13\Longrightarrow y = \frac{1}{99}*13 |
-7,047 | 2/5*3/6/4 = \frac{1}{20} |
-25,072 | 4 \cdot y^3 \cdot \cos{y} \cdot \sin{y} + y^4 \cdot \cos^2{y} - y^4 \cdot \sin^2{y} = d/dy (\sin{y} \cdot \cos{y} \cdot y^4) |
423 | \frac{t - b}{-b + Y} + (-1) = \frac{t - Y}{Y - b} |
-2,965 | 10 \cdot \sqrt{7} = (3 + 2 + 5) \cdot \sqrt{7} |
10,589 | 2 \cdot x + (-1) = -\cos(2 \cdot \sin^{-1}{\sqrt{x}}) = 2 \cdot \sin^2\left(\sin^{-1}{\sqrt{x}}\right) + (-1) = 2 \cdot x + (-1) |
25,058 | \frac{1}{3}5 = \frac53 |
2,465 | 1 + \ln(a) \cdot x + \dfrac12 \cdot x^2 \cdot \ln(a)^2 + x^3 \cdot \ln(a)^3 \cdot \dots/6 = a^x |
38,169 | 10 = \dfrac{40}{4} |
2,356 | \lim_{n \to \infty} a_n*n = 0 \Rightarrow \infty \gt \sum_{n=1}^\infty a_n |
-1,614 | 23/12 \cdot \pi - 19/12 \cdot \pi = \pi/3 |
28,660 | \dfrac{1}{2 + \sqrt{z}} = -\frac{\sqrt{z}}{-z + 4} + \frac{2}{-z + 4} |
47,173 | 5\cdot 13\cdot 29 = 1885 |
23,155 | 0 = -z + 3 rightarrow z = 3 |
-20,302 | \dfrac11\cdot 1 = \frac{-s\cdot 4 + 4}{-4\cdot s + 4} |
5,969 | r \cdot r = 1 + \left(r + 1\right) ((-1) + r) |
36,566 | (1 + y)\cdot (1 + y^2 - y) = y^3 + 1 |
-20,460 | \frac{18\cdot (-1) + 18\cdot f}{-f\cdot 14 + 14} = \frac{1}{2 - f\cdot 2}\cdot \left(-2\cdot f + 2\right)\cdot (-\frac{9}{7}) |
9,146 | \tfrac{c}{f}\cdot f\cdot x = \dfrac{c}{f}\cdot f\cdot f\cdot x/f |
37,563 | 2^{a \cdot b} = 2^{b \cdot a} = \left(2^a\right)^b |
-27,473 | \frac{21}{3} = 7 |
15,679 | 1 - x \cdot x = \frac{1 - x^4}{x^2 + 1} |
-19,088 | \frac{44}{45} = \frac{1}{81 \cdot \pi} \cdot A_s \cdot 81 \cdot \pi = A_s |
-18,350 | \frac{-y\cdot 7 + y^2}{y^2 - y\cdot 11 + 28} = \frac{(y + 7\left(-1\right)) y}{(y + 4\left(-1\right)) \left(y + 7(-1)\right)} |
19,031 | \frac{1}{E \cdot D} = \frac{1}{D \cdot E} |
39,417 | x^3 - y^3 = \left(-y + x\right) (x^2 + yx + y \cdot y) |
27,620 | \dfrac32 \cdot \frac14 = \frac38 |
-1,618 | \pi \cdot 17/12 + 23/12 \cdot \pi = \frac{1}{3} \cdot 10 \cdot \pi |
40,172 | 32 \cdot 28 = 896 |
1,231 | \frac{1/15*8}{3} = \frac{1}{45}*8 |
-25,229 | -\tfrac{6}{1^7} = -\frac{6}{1} = -6 |
-11,534 | -6 + 4*(-1) - 2*i = -10 - i*2 |
-4,589 | \frac{1}{x^2 - x \cdot 5 + 6} \cdot \left(19 \cdot (-1) + 8 \cdot x\right) = \dfrac{3}{x + 2 \cdot (-1)} + \frac{1}{3 \cdot (-1) + x} \cdot 5 |
24,033 | \tfrac{1}{70}*83 = \frac{2}{7} + \frac{1}{5}*2 + \frac{1}{2} |
25,686 | -(x + x + 2) \lt -45 \Rightarrow -45 > -(2\cdot x + 2) |
31,816 | \frac14\cdot 0 + 3\cdot \tfrac{1}{4}/32 = \frac{3}{128} |
30,893 | (3 - \sqrt{2}) (3 + \sqrt{2}) = 3^2 - 2\cdot 1^2 = 7 |
33,787 | u^5 = -\bar{u} = -1/u |
-4,096 | \frac{144*r}{72*r^3} = \frac{r}{r^3}*\frac{144}{72} |
9,715 | -y \cdot y \cdot 2 + 12 \geq -y \cdot 8 + 16 + y^2 \Rightarrow 4 + y \cdot y \cdot 3 - y \cdot 8 \leq 0 |
27,581 | -\tan(\theta) = \tan(-\theta + π) |
-25,256 | \frac{3}{4 \cdot 1^{1/4}} = 3/(4) = \tfrac34 |
11,057 | \frac{b^3 + a^3}{a^2 - b \cdot a + b^2} = a + b |
23,700 | d^{16}*d^8*d^2*d^{64} = d^{90} |
-2,224 | 3/18 = -\frac{1}{18}\cdot 2 + 5/18 |
34,887 | 43\cdot 6! = 30960 |
-10,700 | \tfrac{1}{30*y + 18}*27 = \frac{9}{10*y + 6}*\frac33 |
8,895 | \phi \cdot (-m + l) + h + j + (d - \phi) \cdot k = p \implies -h + p - \phi \cdot \left(-m + l\right) - k \cdot \left(-\phi + d\right) = j |
14,337 | 16 - \sin{x}*32 + (\sin^2{x} + \cos^2{x})*16 = 32*(-\sin{x} + 1) |
13,648 | x^{\frac{1}{4}} = x^{1/4} = e^{\log_e(x^{1/4})} = e^{\log_e(x)/4} |
29,583 | k = 0 + k = 1 + k + (-1) = 2 + k + 2\cdot \left(-1\right) = \cdots = k + (-1) + 1 = k + 0 |
41,721 | {7 \choose 3}*4! = 7!/\left(3!*4!\right)*4! = \tfrac{7!}{3!} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.