id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
20,806 | h + g = ( h, g) \cdot ( 1, 1) \leq \left(h^2 + g^2\right)^{\frac{1}{2}} |
11,708 | \frac{11}{12}\cdot \pi = \pi\cdot 8/12 + 3\cdot \pi/12 |
1,357 | (b^2 + a^2)^p = a^{2p} + ... + a^p b^p {p \choose \frac{p}{2}} + ... + b^{2p} |
18,202 | 5*x^2/4 \leq 2 rightarrow x^2 \leq 8/5 |
47 | (\tfrac{1}{4})^{3/2} = (\sqrt{1/4})^3 = \sqrt{1/64} |
10,333 | \dfrac{1}{b^2}\cdot b^3 = b |
28,443 | \left|{1/S}\right| \left|{S}\right| \left|{-E + \lambda x}\right| = \left|{x\lambda - E}\right| \left|{S}\right| \left|{1/S}\right| |
32,731 | \pi \cdot y \cdot \left(2 \cdot j + 1\right) = \pi \cdot N \Rightarrow \frac{1}{1 + j \cdot 2} \cdot N = y |
30,062 | 8^{\frac{1}{2}}*2^{1 / 2} = 4 |
-8,451 | (-9)\cdot 7 = -63 |
4,364 | x^3 + (-1) = (x + (-1))\cdot \left(x^{3 + (-1)} + x^{3 + 2\cdot \left(-1\right)} + x^{3 + 3\cdot (-1)}\right) = (x + \left(-1\right))\cdot (x^2 + x + 1) |
23,193 | \left(-1\right) + 2\times \cos^2{z} = -\sin^2{z} + \cos^2{z} |
43,189 | 20 \cdot 3 + 50 \cdot \left(-1\right) = 10 |
-7,225 | \dfrac{3}{55} = \dfrac{3}{10}*\tfrac{2}{11} |
17,004 | 3 = \sqrt{7950/30 - 16 \cdot 16} |
-4,214 | 8/7\cdot z = z\cdot 8/7 |
5,572 | (x_2 + x_1) \cdot (x_2 + x_1) = 2! \cdot x_1 \cdot x_2 + x_1^2 + x_2 \cdot x_2 |
36,361 | |5403-5403|=0 |
24,252 | (y + 1) (y + (-1)) = y^2 + (-1) |
-11,446 | {4} \cdot \left(6h + 4i \right)= {4} \cdot -9 \cdot \dfrac{ 5h - 10j }{ {4} } = -9 \cdot \left(5h - 10j \right) |
11,685 | \frac{1}{w^2 + 5} + 4 = \frac{1}{w^2 + 5}*(1 + 4*\left(w^2 + 5\right)) = \frac{4*w^2 + 21}{w^2 + 5} |
-7,017 | \dfrac{2}{7}*3/8/6 = \dfrac{1}{56} |
-19,707 | \frac{1}{7}\cdot 54 = \frac67\cdot 9 |
-2,401 | (-5)^2 \cdot (-5) = \left(-5\right)\cdot (-5)\cdot (-5) = 25\cdot \left(-5\right) = -125 |
30,936 | \tfrac{1}{6} = \frac{1}{2\cdot 3} = 0.1 |
43,333 | 2380*10 = 23800 |
877 | z^2 + z \cdot 6 + 5 = \left(1 + z\right) \cdot (5 + z) |
29,286 | 13832 = 20^3 + 18^3 = 24 * 24 * 24 + 2^3 |
14,422 | (1 - 0.4) \cdot \frac{3}{5 + 3} \cdot 0.4 \cdot \frac{8}{4 + 8} = 3/50 |
23,496 | \sin{t} \cdot \cos{y} - \cos{t} \cdot \sin{y} = \sin\left(-y + t\right) |
10,340 | c \cdot c \cdot c = c^3 |
14,446 | \dfrac{3}{11} = \dfrac{3 \cdot 1}{4 \cdot 2 + 1 \cdot 3} |
20,176 | -f \cdot f = -f \cdot f |
22,675 | B \cap (F) = F \cap (B \cap F) = B \cap F |
16,253 | -x\cdot v = v\cdot (-x) |
-19,121 | \frac{59}{60} = G_q/\left(16\cdot \pi\right)\cdot 16\cdot \pi = G_q |
-11,550 | -i \cdot 24 + 8 = -8 + 16 - 24 \cdot i |
-12,350 | \sqrt{11}*2 = \sqrt{44} |
-27,622 | 4\cdot (-1) + 21 = 17 |
-20,182 | -\frac{36}{r \cdot 81 + 18 \cdot (-1)} = -\frac{4}{9 \cdot r + 2 \cdot \left(-1\right)} \cdot \frac{1}{9} \cdot 9 |
-22,962 | \tfrac{135}{150} = 9\times 15/(15\times 10) |
-1,507 | \dfrac{4}{3} \div \dfrac{9}{5} = \dfrac{4}{3} \times \dfrac{5}{9} |
38,869 | \sqrt{2} \cdot 2 - 2 = 2 \cdot (-1 + \sqrt{2}) |
12,933 | \frac{1}{1 + z} = (1 + i + z - i)^{-1} = \frac{1}{\left(1 + i\right) \cdot (1 + \frac{1}{1 + i} \cdot (z - i))} |
2,964 | \cos{z} \sin{x} + \cos{x} \sin{z} = \sin(x + z) |
4,101 | -y^3 + y^2 + 2\cdot (-1) = \left(2\cdot \left(-1\right) - y^2 + y\cdot 2\right)\cdot (1 + y) |
36,937 | 3 - 2*x - z = 0 \implies z = -x*2 + 3 |
3,044 | \frac{\binom{1}{1}\cdot \binom{10}{1}}{\binom{11}{2}} = 2/11 |
-24,721 | \frac{l + 4}{16 (-1) + l^2} = \frac{1}{16 (-1) + l^2}(2l + 2(-1)) + \frac{6 - l}{16 (-1) + l * l} |
41,531 | |X| = |X| \times |X| = |X \times X| |
-1,902 | \pi \cdot 17/12 = \dfrac14 \cdot 5 \cdot \pi + \pi/6 |
44,085 | 6344 = 2^3 + 8^3 + 12^3 + 16^2 \cdot 16 |
-3,984 | \frac{p^4 \cdot 90}{p \cdot 81} = p^4/p \cdot \frac{90}{81} |
10,882 | x \cdot (e + b \cdot 0) = x \cdot e + 0 \cdot b |
-12,837 | 8 = 11\cdot \left(-1\right) + 19 |
-1,810 | \frac{\pi}{6} - \dfrac{\pi}{6} = 0 |
15,410 | x^2 + (-1) = \left(1 + x\right)\cdot (\left(-1\right) + x) |
12,370 | (x + 2y)^2 = 4(xy)^2 - 24 xy + 49 = 4xy*(xy + 6(-1)) + 49 |
4,895 | \frac{y^2 + \left(-1\right)}{(-1) + y} = y + 1 |
-7,063 | 6/15*5/14 = \dfrac{1}{7} |
-30,022 | n \cdot z^{\left(-1\right) + n} = \frac{\mathrm{d}}{\mathrm{d}z} z^n |
3,618 | \left(1 + x\right)^2\times 2 = x \times x\times 2 + x\times 4 + 2 |
36,612 | f_2 f_1 = f_2 f_1 |
-6,297 | \frac{3}{3x + 27 \left(-1\right)} = \frac{1}{(x + 9\left(-1\right)) \cdot 3}3 |
33,336 | \frac{41 s + 420}{20 (-1) + s^2 - s} = -\dfrac{256}{9(s + 4)} + \dfrac{1}{9(s + 5(-1))}625 |
11,213 | y + 6 = (x^2 + y^2)^{1/2} \Rightarrow 36 + y \cdot 12 = x^2 |
11,807 | a^2 + b \cdot b + a^2\cdot b \cdot b = (a - b)^2 + 2\cdot a\cdot b + a^2\cdot b^2 = 1 + 2\cdot a\cdot b + a^2\cdot b \cdot b = \left(1 + a\cdot b\right)^2 |
14,540 | \frac{1}{g \times \frac{1}{f}} = f/g |
38,306 | \tau^2 = \tau^2 |
11,993 | x * x + d * d + 2*d*x = (d + x)^2 |
6,530 | b^j f = f b^j |
6,710 | \frac{d\eta}{dt} = -x\sqrt{\frac{1}{\eta}} \eta = -x\sqrt{\eta} |
7,909 | |I - A B| = |-A B + I| |
20,026 | \frac{A\cdot B}{A}\cdot 1 = \frac{C}{A} \Rightarrow \frac{C}{A} = B |
31,840 | \chi\cdot \frac{1}{\chi\cdot n}\cdot n = \frac1n\cdot n |
1,518 | 1 + d^2 \cdot d = (1 + d)\cdot (1 - d + d \cdot d) = (1 + d)\cdot \sqrt{3}\cdot d |
26,264 | 10^2*2 + 2*10^1 + 10^0*9 = 229 |
13,764 | z^{2^n} = \left(z^4\right)^{2^{n + 2\cdot (-1)}} = (z + 1)^{2^{n + 2\cdot (-1)}} = z^{2^{n + 2\cdot (-1)}} + 1 |
6,366 | (l - x)! = (1 + l - 1 + x)! |
7,096 | (3 + y)\cdot (y + 1) = y \cdot y + 4\cdot y + 3 |
1,998 | \frac{58!}{38!} = 3*13*\frac{58!}{39!} |
31,646 | (x + a + h) (a \cdot a + h^2 + x^2 - ah - hx - xa) = a^3 + h \cdot h^2 + x^3 - 3xh a |
-710 | (e^{23 \cdot \pi \cdot i/12})^{13} = e^{\frac{23}{12} \cdot \pi \cdot i \cdot 13} |
12,152 | (y + \left(-1\right))^2 + 1 = -2\cdot y + y^2 + 2 |
9,221 | -6\cdot x - 24 = -(12 + x\cdot 3)\cdot 2 |
-5,449 | \frac{1}{1000} 16.8 = \frac{1}{1000} 16.8 |
41,297 | 419^3 - 362 * 362 * 362 = 26122131 = 235^3 + 236 * 236 * 236 = 107^3 + 292 * 292 * 292 |
-9,494 | -x \cdot x \cdot 7 \cdot x + x \cdot x \cdot 5 \cdot 7 = -7 \cdot x^3 + 35 \cdot x^2 |
4,803 | c^2 + b^2 = -2*b*c + (b + c)^2 |
53,184 | x^2 = x^2 + 1 + \left(-1\right) = x^2 + 1 + 1 = x^2 + 1^2 + 1^2 = x + 1 + x + x + 1 = x + x + x + 1 + 1 = x |
38,081 | \left(2 = \frac{2}{z^2} + 1 - \dfrac{4}{3\times z} \implies z \times z\times 6 = z \times z\times 3 - 4\times z + 6\right) \implies 3\times z \times z + 4\times z + 6\times (-1) = 0 |
16,134 | 600 + 420 + 91 = 16 \cdot 16 + 11^2 + 12^2 + 13^2 + 14^2 + 15^2 |
-4,448 | \left(z + 2\cdot (-1)\right)\cdot \left(3 + z\right) = z^2 + z + 6\cdot (-1) |
13,643 | (2\cdot (5\cdot r + 4))^2 + 2\cdot (5\cdot r + 4) = 100\cdot r^2 + 160\cdot r + 64 + 10\cdot r + 8 = 10\cdot (10\cdot r^2 + 17\cdot r + 70) + 2 |
11,310 | z^2 = (z + (-1)) (1 + z) + 1 |
14,507 | (-8)^{\frac13 \cdot 4} = -(-1)^{\dfrac{1}{3}} \cdot 16 |
-7,160 | 15/49 = \frac{3}{7}\cdot 5/7 |
-4,092 | \tfrac{1}{16} \cdot 4 \cdot \tfrac{t^4}{t^5} = \frac{4 \cdot t^4}{t^5 \cdot 16} |
7,922 | \frac{g \cdot 1/d}{g \cdot 1/d} = 1 = d g/d/g |
20,022 | (z + y)^2 = z^2 + zy + zy + y^2 \gt z^{2 - y} + y^{2 - z} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.