id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
23,877 | \sin(x) = \sin(\frac{1}{2} \cdot x + \frac{1}{2} \cdot x) = 2 \cdot \sin(x/2) \cdot \cos(\frac{x}{2}) |
-21,001 | \frac{1}{-63}*\left(90*(-1) + 9*m\right) = \frac{1}{-7}*(10*\left(-1\right) + m)*\frac19*9 |
-2,013 | \dfrac{25}{12} \pi = 7/6 \pi + \pi \frac{11}{12} |
39,310 | 0 = h + a + x + g + d + v \Rightarrow h = -(a + x + g + d + v) |
29,495 | a^2 + h^2 = 0 \Rightarrow a = h = 0 |
19,336 | n' f = f m \Rightarrow n' = f \frac1f m |
11,579 | \dfrac{1}{14}(21 + 30 + 10 + 12 + 3) = \frac{1}{14}76 |
10,498 | \frac{x^2 + 4(-1)}{2(-1) + x} = 2 + x |
19,964 | y^2 + y^2 + 1 = y*y + y + y + y*y = y^2 + y + y + y * y + 1 |
-20,992 | -14/2 = -7/1\cdot 2/2 |
-7,111 | \frac{5}{8} \cdot 4/7 = \frac{5}{14} |
17,030 | x - d \lt \delta \implies x \lt \delta + d |
-3,362 | 2\cdot 13^{\dfrac{1}{2}} + 13^{\tfrac{1}{2}} = 4^{1 / 2}\cdot 13^{\frac{1}{2}} + 13^{\frac{1}{2}} |
17,448 | x^4\cdot 2 + x^6 = ((-1) + x^4 + x^2)\cdot (x^2 + 1) + 1 |
-4,019 | \dfrac{1}{q^2} \cdot q^3 \cdot 10/60 = \tfrac{q^3 \cdot 10}{60 \cdot q \cdot q} |
23,258 | (n \cdot 2)! = 2 \cdot n \cdot \left(n \cdot 2 + \left(-1\right)\right)! |
-27,619 | -25 + 21 + 4 \cdot \left(-1\right) + 25 = -25 + 25 + 21 + 4 \cdot (-1) = 0 + 21 + 4 \cdot (-1) |
-14,450 | 4 + (7 \times 10) = 4 + (70) = 4 + 70 = 74 |
23,279 | x = y + x*y rightarrow x = \dfrac{1}{-y + 1}*y |
-18,364 | \frac{(8\left(-1\right) + q) q}{(q + 8\left(-1\right)) (q + 5)} = \dfrac{1}{q^2 - q*3 + 40 (-1)}(-q*8 + q^2) |
20,879 | 1/\tan(K) = \cot(K) |
11,807 | h^2 + b^2 + h^2 \cdot b^2 = (h - b)^2 + 2 \cdot h \cdot b + h^2 \cdot b^2 = 1 + 2 \cdot h \cdot b + h^2 \cdot b^2 = \left(1 + h \cdot b\right)^2 |
-3,512 | 2\cdot 4/(2\cdot 50) = \frac{1}{100}\cdot 8 |
24,450 | \sqrt{(2 \cdot 3^3 \cdot 5)^2} \cdot \sqrt{2 \cdot 587} = \sqrt{2 \cdot 587 \cdot (2 \cdot 3^3 \cdot 5)^2} |
13,089 | \frac{5}{216} + \frac{2}{27} + 4/27 + 1/9 = 77/216 |
23,291 | 8 \cdot 8 = \left(1 + 3 + 3 + 1\right)\cdot 8 |
3,593 | 2\cdot \sin(F)\cdot \cos(F) = \sin(F\cdot 2) |
19,731 | \sum_{H=1}^e g = \sum_{H=1}^g e |
49,753 | 124 = 2*62 = 2*2*31 |
5,911 | a \cdot a - 4\cdot a + 5\cdot (-1) = (a + 5\cdot (-1))\cdot (a + 1) = 0\Longrightarrow a = -1, 5 |
26,998 | \tfrac{4}{100000000} = 4.0*10^{-8} |
-6,425 | \frac{t}{(t + 10 \cdot (-1)) \cdot (t + 9)} = \frac{t}{90 \cdot (-1) + t^2 - t} |
39,926 | \beta*2 = 1.59549 = \beta*3 |
6,367 | 1/12 = \dfrac{1}{52} + 1/26 + 1/39 |
33,311 | 2^m = 2^{m + (-1)} + 2^{m + (-1)} |
16,278 | \left(1 + x\right)^{k + 1} = (1 + x)*(1 + x)^k \geq (1 + x)*(1 + k*x) |
-19,667 | \frac25 \cdot 7 = 14/5 |
30,581 | |e^{i \cdot x} - e^{-i \cdot x}| = |2 \cdot i \cdot \sin\left(x\right)| = |2 \cdot \sin(x)| = 2 \cdot \sin\left(x\right) |
7,669 | (s - l)\cdot 4 = -\left(l - s\right)\cdot 4 |
19,168 | -\dfrac{n}{n - k + 1} + \frac{n^2}{(n - k + 1) \cdot (n - k + 1)} = \frac{n\cdot (k + (-1))}{\left(1 + n - k\right)^2} |
-19,674 | \dfrac{24}{7} = 6 \cdot 4/(7) |
18,218 | 0 = \left(1 - a\right) + (-a + 2)\Longrightarrow 1.5 = a |
6,989 | 152 = 6^3 - 4^3 = 5 \cdot 5 \cdot 5 + 3^3 |
16,243 | x + x^2 + \dotsm x^n = \frac{1 - x^n}{-x + 1} x |
22,964 | \tfrac{1}{x^2} \cdot x = \dfrac{1}{x} |
1,347 | 2^{n + \left(-1\right)} = \dfrac{2^n}{2} |
-6,400 | \dfrac{1}{n^2 + n\cdot 16 + 63}\cdot 4 = \frac{4}{(n + 7)\cdot (9 + n)} |
6,385 | 6*5*3*2*4 = 720 |
1,120 | -BD \cdot D + DDB = D \cdot (-DB + BD) |
19,491 | -3\cdot (x - c) = (c + a + x)\cdot (x - c) \implies -3 = a + x + c |
14,452 | xd N = dxN |
-7,569 | \tfrac{-9 + i\cdot 21}{3 - 3 i} \frac{3 i + 3}{3 + 3 i} = \frac{-9 + i\cdot 21}{3 - 3 i} |
41,303 | 79 = 80 + \left(-1\right) |
36,266 | 2 \cdot 2^{n + (-1)} = 2^1 \cdot 2^{n + \left(-1\right)} = 2^{1 + n + \left(-1\right)} = 2^n |
26,094 | (h + b)^2 = h^2 + b b + 2 h b = h^2 + b b + h b = h + b + h b = h b |
-24,984 | 3*\pi*2 = 6*\pi |
-28,901 | \dfrac{1}{2} \cdot (\sqrt{2}/2)^2 \cdot π = π/4 |
29,328 | f\cdot z^2 + b\cdot z = -c \Rightarrow (z^2\cdot f + b\cdot z)^3 = (-c)^3 |
8,420 | x^{\left(-1\right) + m}\cdot x^1 = x^m |
20,998 | h^2 - c^2 = (h + c)*(-c + h) |
6,180 | (\sin{\gamma} + \cos{\gamma})^2 = 1 + 2\cdot \sin{\gamma}\cdot \cos{\gamma} = 1 + \sin{2\cdot \gamma} = 1^2 = 1 \Rightarrow \sin{\gamma\cdot 2} = 0 |
25,453 | \frac{1}{-xy + 1} = 1 + yx + \left(xy\right)^2 + \dots |
17,163 | \tan(x/2) = \frac{1}{1 + \cos(x)} \cdot \sin\left(x\right) = (1 - \cos(x))/\sin(x) |
-20,058 | \frac{-n\times 6 + 6\times \left(-1\right)}{n + 9}\times \frac{1}{9}\times 9 = \frac{-n\times 54 + 54\times (-1)}{9\times n + 81} |
10,804 | c^{-k + x} = \dfrac{1}{c^k}*c^x |
54,554 | 807 = 3\times 269 |
-10,965 | \dfrac12 \cdot 146 = 73 |
21,956 | \frac{2\cos(0)}{\cos(0)}1 = 2 |
26,402 | \frac{1}{2} \cdot \frac{3}{4} = \dfrac{1}{8} \cdot 3 |
11,892 | 5*\left(10^{800} + (-1)\right)/9 = \frac59 \left(10^{400} + (-1)\right) \left(1 + 10^{400}\right) |
230 | C^3 + D^3 = (D * D + C^2 - C*D)*(C + D) |
27,409 | s_1 b_1 + \dotsm + b_q s_q = b_1 s_1 + \dotsm + b_q s_q |
12,387 | 10 * 10 = 7^2 + 5^2 + 4 * 4 + 3 * 3 + 1^2 |
-26,542 | (10 + 3*x)*(10 - 3*x) = 100 - 9*x^2 |
24,990 | 2^{\frac{1}{2} \cdot p_1} \cdot (-\dfrac{1}{2} + p_2)^{\tfrac{p_1}{2}} = (\left(-1\right) + p_2 \cdot 2)^{\dfrac{p_1}{2}} |
33,361 | (f - b)*(f + b) = f * f - b * b |
14,964 | zx/100 = \frac{z}{100} x |
8,949 | 2\times \sqrt{-2} + 1 = \left(-1 + \sqrt{-2}\right)\times (1 - \sqrt{-2}) |
28,778 | 2 \cdot 3 \cdot i + 5 = 2 \cdot 3 \cdot i + 4 + 1 = 2 \cdot \left(3 \cdot i + 2\right) + 1 |
-563 | e^{\pi \cdot i/2 \cdot 10} = \left(e^{\frac{\pi}{2} \cdot i}\right)^{10} |
-12,171 | 19/72 = s/\left(18\cdot \pi\right)\cdot 18\cdot \pi = s |
14,847 | \frac{\partial}{\partial x} (x \cdot x\cdot z) = \frac{\mathrm{d}}{\mathrm{d}x} x^2\cdot z + x^2\cdot \frac{\mathrm{d}z}{\mathrm{d}x} = 2\cdot x\cdot z + x \cdot x\cdot \frac{\mathrm{d}z}{\mathrm{d}x} |
-28,841 | 7 \cdot z + 14 \cdot (-1) + 1.25 \cdot z = z \cdot 7 + 14 \cdot (-1) + z \cdot 1.25 |
28,459 | \left(1 + \sqrt{2} + \sqrt{3}\right) \cdot \sqrt{i} = \sqrt{i} + \sqrt{i \cdot 2} + \sqrt{i \cdot 3} |
28,891 | |B_1 \cup B_1| = 1 + |B_1| |
38,946 | 3^{10^{20}} = ...\cdot 8084427865522000000000000000000001 |
17,677 | z^3 - 3 \cdot z^2 + 4 = z^3 + 1 - 3 \cdot z^2 + 3 = (z + 1) \cdot \dotsm - 3 \cdot (z^2 + (-1)) |
2,902 | \left(y + z\right)\cdot (z^2 - z\cdot y + y^2) = z \cdot z \cdot z + y^3 |
24,364 | (1 + y)^{n_2}*(1 + y)^{n_1} = (1 + y)^{n_2 + n_1} |
-24,369 | \dfrac{152}{9 + 10} = \dfrac{152}{19} = \dfrac{152}{19} = 8 |
26,468 | 10800 = 5 * 5*3^3*2^4 |
-27,629 | -8 + 3\cdot (-1) + 8 + 3\cdot (-1) = -8 + 8 + 3\cdot (-1) + 3\cdot \left(-1\right) = 0 + 6\cdot \left(-1\right) = -6 |
14,465 | \binom{5}{5}\cdot 4!\cdot 5!/4! = 120 |
2,595 | 1 + (3 (-1) + n) = 2 \left(-1\right) + n |
-17,535 | 33 = 21\cdot \left(-1\right) + 54 |
-5,323 | 2.4 \cdot 10^5 = 2.4 \cdot 10^{3 - -2} |
-7,364 | \frac{1/5}{2} \cdot 4 = 2/5 |
4,970 | \left(2 z + y\right) (y*2 + z) = 2 y y + 2 z^2 + y z*5 |
-15,510 | \frac{g^4}{\frac{1}{l^3}*g^2} = \dfrac{g^4}{g^2*\dfrac{1}{l^3}} |
6,213 | a = x*A rightarrow a/A = x |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.