id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
-26,434 | 64/7 = -\frac{1}{7}*16*(-4) |
18,115 | x - j + m = x - j - m |
7,510 | x^2 + y^2 + z^2 = 2xyz \implies x = y = z = 0 |
2,353 | \sin(\alpha)\cdot \sin(\beta) + \cos(\alpha)\cdot \cos(\beta) = \cos(-\beta + \alpha) |
33,679 | \dfrac{q^{5 + (-1)}\cdot s^{(-1) + 7}}{s^{6 + (-1)}\cdot q^{\left(-1\right) + 4}}\cdot r^{3 + (-1)} = q^{2 + (-1)}\cdot s^{(-1) + 2}\cdot r^{3 + (-1)} |
16,004 | {n \choose m} = \frac{n!}{m! (n - m)!} |
11,205 | 1 + t^4 = (t^2 + \left(-1\right)) * (t^2 + \left(-1\right)) + 2t * t |
24,626 | 790 = (250 * 3) + ((3 - 1) * 20) |
1,440 | \dfrac{1}{\frac{7}{z^2} + 1/z}\cdot ((-1) + \frac{1}{z^3}) = \dfrac{1 - z^3}{z\cdot 7 + z \cdot z} |
-7,436 | 1/3 = \frac{6}{10}*5/9 |
-3,286 | (5 + 3*(-1))*2^{1/2} = 2^{1/2}*2 |
-3,143 | (1 + 4)\cdot \sqrt{13} = \sqrt{13}\cdot 5 |
29,890 | \frac{(-1) + z}{\left((-1) + z\right)^2} = \frac{1}{z + (-1)} |
7,032 | \sqrt{13}*n - \dfrac{n*5}{\sqrt{13}} = \frac{8*n}{\sqrt{13}} |
6,598 | 4 \cdot x^5 = Q^2 - y \cdot y \Rightarrow 4 \cdot x^5 = (Q - y) \cdot (y + Q) |
12,659 | |z_2 - z_1| = z_1 - z_2 = \frac{z_1^2 - z_2^2}{z_2 + z_1} < \left(z_1^2 - z_2 \times z_2\right)/(2\times z_2) |
15,351 | \cos(y + z) = \cos(z) \times \cos(y) - \sin(y) \times \sin(z) |
-4,634 | \dfrac{1}{25 (-1) + y \cdot y}(10 + 8y) = \dfrac{3}{y + 5} + \tfrac{5}{y + 5(-1)} |
31,139 | π\cdot 2\cdot \frac{1}{3}/(2\cdot π) = 1/3 |
36,887 | 11 + 5*(-1) + 3*(-1) = 3 |
7,085 | x \cdot x^2 + y^3 + z^3 - y\cdot z\cdot x\cdot 3 = (x^2 + y \cdot y + z^2 - y\cdot x - y\cdot z - x\cdot z)\cdot (z + x + y) |
6,792 | \pi/6 = \pi\times 2/12 |
-21,598 | \cos{-\pi*\frac53} = 0.5 |
33,680 | -(y + (-1))*(3*(-1) + y) = -y^2 + y*4 + 3*(-1) |
25,287 | \tfrac{3}{7} + \frac{1}{42}5 = \dfrac{1}{42}18 + \frac{1}{42}5 = 23/42 |
20,566 | 165 = {8 + 4 + \left(-1\right) \choose (-1) + 4} |
33,195 | \frac{1}{4\times \left(-1\right) + 8}\times (28 + 8\times (-1)) = 5 |
28,695 | 255\cdot (-1) + 32\cdot x - 2\cdot 0 = 0 \Rightarrow \frac{255}{32} = x |
-4,483 | \frac{1}{y^2 - 5y + 6}(6y + 17 (-1)) = \frac{1}{y + 3(-1)} + \tfrac{5}{y + 2(-1)} |
26,876 | 210 + 360 + 90 + 10 + 45 = 715 |
5,001 | 2/9 = 4*\frac19/2 |
11,637 | \frac{L}{2} = L \Rightarrow 0 = L |
16,984 | z^a \cdot z^b = z^{a + b} |
13,327 | s + (-1) + k + 2 \cdot (-1) = 3 \cdot \left(-1\right) + s + k |
2,809 | 1 - \frac{1}{n + 1} = \frac{n + 1}{1 + n} - \frac{1}{1 + n} |
15,875 | -i = 0 - i = \cos{\dfrac32 \cdot π} + \sin{\frac{π}{2} \cdot 3} \cdot i |
15,999 | (1 + z^2 - 3^{\frac{1}{2}} \times z) \times (z^2 + z \times 3^{\frac{1}{2}} + 1) = z^4 - z^2 + 1 |
11,852 | \cot{\theta} = -\tan(-\frac12 \cdot \pi + \theta) |
18,235 | x^3 = -2x + (-1) = x + 2 |
28,264 | 2\cdot l + 2\cdot (-1) = 2\cdot (\left(-1\right) + l) |
-1,676 | \dfrac{\pi}{4} + \pi \cdot 3/2 = \frac74 \pi |
111 | 3/7 = \dfrac{1}{{7 \choose 3}}*{6 \choose 2} |
20,575 | \sin(\mathbb{E}[X]) = \mathbb{E}[\sin\left(X\right)] |
15,188 | y \cdot y \cdot y \cdot 4 - y \cdot 3 = -\frac{1}{2} \Rightarrow 8 \cdot y^3 - 6 \cdot y + 1 = 0 |
-30,341 | 6 + 3*(-1) = 3 |
-30,854 | \frac{-5x^2 + 20 x}{-x*4 + x^3 - x^2*3} = -\dfrac{1}{x + 1}5 |
13,158 | p = \dfrac{1}{n^2}\cdot m^2\Longrightarrow p\cdot n \cdot n = m \cdot m |
3,777 | \frac{\mathrm{d}}{\mathrm{d}x} z^3 = 3z^2 \frac{\mathrm{d}z}{\mathrm{d}x} |
-13,060 | 16 = 26 + 10 \left(-1\right) |
-4,484 | (z + 2\cdot (-1))\cdot (3\cdot (-1) + z) = 6 + z^2 - z\cdot 5 |
17,424 | 5 \times \dfrac15 \times \dfrac15 = 1/5 |
-20,396 | -1/4*\frac{-5*r + 4*(-1)}{-5*r + 4*(-1)} = \frac{4 + r*5}{16*\left(-1\right) - 20*r} |
17,030 | z - a < \delta \implies \delta + a > z |
21,483 | \left(z^2 = 1 \implies ((-1) + z)^2 = 0\right) \implies 0 = (-1) + z |
-16,674 | -1 = -a - 2 = -a - 2 = -a + 2 \left(-1\right) |
-23,020 | \frac{3 \cdot 10}{10 \cdot 5} = 30/50 |
-529 | \left(e^{\pi i \cdot 5/12}\right)^4 = e^{5\pi i/12 \cdot 4} |
-1,897 | \frac14*5*\pi = 7/6*\pi + \pi/12 |
16,602 | \frac{2 \cdot 1/5}{3 \cdot \dfrac15} = \dfrac{1}{5} \cdot 2 \cdot 5/3 = 2/3 |
20,889 | a_3\cdot x\cdot a_2\cdot x\cdot a_1 = a_1\cdot a_3\cdot x^2\cdot a_2 |
752 | 6 = \frac{1}{\left(2(-1) + 3\right)!}3! |
7,842 | \sigma\cdot (v + x) = \sigma v + \sigma x |
-14,022 | -\frac{18}{3 + 5 \cdot (-1)} = -\frac{1}{-2} \cdot 18 = -\dfrac{1}{-2} \cdot 18 = 9 |
28,368 | y^2 - 2y + 1 \geq 0 \implies 2y \leq y^2 + 1 |
-1,605 | \frac{1}{6}7 \pi - \dfrac{\pi}{2} = \pi \frac132 |
-20,522 | \frac{9\cdot (-1) + t}{t + 9\cdot (-1)}\cdot 10/7 = \frac{90\cdot (-1) + t\cdot 10}{63\cdot (-1) + 7\cdot t} |
17,930 | l*0 = 0 = 0 l |
4,671 | \{E_2, E_1\} \Rightarrow E_1 = E_2 \cup E_1 \backslash E_2 |
-27,734 | -\csc(x)\cdot \cot(x) = d/dx \csc(x) |
137 | -\cos{\alpha} = \cos(\alpha + π) |
26,097 | -k^2 + (1 + k)^2 = 2\cdot k + 1 |
30,802 | F = \sqrt{F} \cdot \sqrt{F} |
16,936 | (-g + d) \cdot (g + d) = d^2 - g^2 |
23,022 | 6.4 = 2 + 8*0.55 |
23,238 | \left(a^2 - 2 \cdot a \cdot g + g^2 = (a - g)^2 = 0 \implies 0 = a - g\right) \implies g = a |
16,263 | 1 = \frac1g + \frac{1}{g + b} + \frac{1}{g + b + c} \geq \frac{3}{g + b + c} |
-20,515 | \dfrac{1}{80\cdot (-1) + 8\cdot p}\cdot (-5\cdot p + 50) = -5/8\cdot \frac{p + 10\cdot (-1)}{10\cdot (-1) + p} |
18,726 | 8 = (\sqrt{a^2 + b^2})^3 \implies (a^2 + b^2) \cdot (a^2 + b^2) \cdot (a^2 + b^2) = 8 \cdot 8 = (2 \cdot 2 \cdot 2)^2 = 2^6 |
26,502 | x\cdot h = f\cdot g \implies f = h,x = g |
1,982 | -z \cdot 84 = 6 \cdot z \cdot (-7) \cdot 2 |
28,639 | 2 + i\sqrt{5} = 2 + \sqrt{-5} |
29,645 | -1 = \sin(\dfrac32 \pi) |
2,669 | 2x + 2\varphi = (x + \varphi)*2 |
25,761 | \frac98 = \frac{3}{2\cdot 1/3}\cdot \dfrac{1}{4} |
13,024 | \tfrac{3}{4}\cdot 3 + \frac{1}{4} = 2.5 |
17,069 | r^2 + r \cdot r \cdot 2 = r^2 \cdot 3 |
7,595 | p^l*b = c*x*p\Longrightarrow c*x = b*p^{l + (-1)} |
21,615 | (1 - z + z^2)^{3\cdot k}\cdot (1 + z)^{3\cdot k} = ((1 - z + z^2)\cdot (1 + z))^{3\cdot k} = \left(1 + z^3\right)^{3\cdot k} |
-3,806 | r^2\cdot 8/5 = \tfrac85\cdot r \cdot r |
19,631 | (r_2 + r_1)\cdot m = m\cdot r_2 + m\cdot r_1 |
5,866 | x^2 + x \cdot 4 + 3 = (x + 3) (x + 1) |
28,421 | le x = lx e |
-7,621 | \dfrac{3 + 3\cdot i}{3 + 3\cdot i}\cdot \tfrac{3 + 21\cdot i}{-i\cdot 3 + 3} = \frac{21\cdot i + 3}{3 - 3\cdot i} |
29,531 | 2\cdot 3^{1 + \left(-1\right)} = 2 = 3^1 + \left(-1\right) |
-26,655 | \left(7 r^2 + 2\right) (r^2*7 + 2 (-1)) = (7 r^2)^2 - 2^2 |
13,439 | \sqrt{4 - x^2}/2 = \cos{\theta} \implies \cos{\theta}*2 = \sqrt{-x^2 + 4} |
-11,729 | \frac{36}{25} = (\frac{1}{5}*6)^2 |
7,130 | \frac{10}{23 - -7} = \frac{1}{30} \cdot 10 = \dfrac13 |
38,614 | \left(-3\right)\cdot \left(-4\right) = 12 |
17,628 | \frac{1}{-1/2 + \dfrac{1}{A_x} \cdot A_{2 \cdot x + 1}} = \frac{A_x}{-A_x/2 + A_{1 + x \cdot 2}} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.