id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
17,599 | X^3 + 1 = \left(1 + X\right)\times (X^2 - X + 1) |
-9,342 | p \cdot 27 = 3 \cdot 3 \cdot 3 p |
42,463 | 1=1*8-1*7=1*8-1*(23-2*8) |
33,375 | (3 \cdot z + 2 \cdot (-1)) \cdot \left(5 + z\right) = 10 \cdot (-1) + 3 \cdot z^2 + z \cdot 13 |
14,024 | -\dfrac{1}{\tau} = 5*i = 25*\tau |
-2,610 | \sqrt{250} - \sqrt{40} = \sqrt{25 \cdot 10} - \sqrt{4 \cdot 10} |
12,947 | 30 \cdot 7!/9! = \frac{30}{72} = \frac{5}{12} |
17,338 | 2\cdot (a + \frac{1}{2}\cdot (z + y)) = y + a + z + a |
-26,515 | (3*(-1) + 5*x)^2 = 9 + 25*x^2 - 30*x |
-7,601 | \dfrac{-7+22i}{3-2i} = \dfrac{-7+22i}{3-2i} \cdot \dfrac{{3+2i}}{{3+2i}} |
8,512 | x a + b x = \left(b + a\right) x |
34,492 | \frac12\cdot (\left(-1\right)\cdot \pi) = -\dfrac{\pi}{2} |
-7,116 | 1/6 = \frac39*\frac{4}{8} |
-2,076 | 13/12 \cdot \pi = \pi/3 + \pi \cdot 3/4 |
10,817 | \frac16(q^6 + q + q \cdot q + q^3 + q^4 + q^5) = q\cdot (q^5 + 1 + q + q \cdot q + q^3 + q^4)/6 |
5,187 | (1 - x)\cdot \left(1 + x\right) = -x^2 + 1 |
25,968 | z \cdot 4\% = z \cdot 0.04 |
-557 | \tfrac{1}{12}\cdot \pi = -\pi\cdot 24 + \dfrac{289}{12}\cdot \pi |
7,004 | (-\pi + x) (x - e) = \pi e + x^2 - x*(\pi + e) |
20,508 | 503\cdot 497 = (500 + 3)\cdot (500 + 3\cdot (-1)) = 500^2 - 3 \cdot 3 = 250000 + 9\cdot (-1) = 249991 |
18,763 | z = x + i\cdot y \Rightarrow -x + z = i\cdot y |
31,383 | 4 \cdot V \cdot r \cdot x^2 = x \cdot r \cdot 2 \cdot 2 \cdot x \cdot V |
30,959 | \left((-1) + y\right)^2 + 1 = 2 + y^2 - 2\cdot y |
-22,714 | 10\cdot 4/(4\cdot 9) = 40/36 |
-5,441 | 2.36 \cdot 10 = \dfrac{10}{1000} \cdot 2.36 = 2.36/100 |
29,047 | (2^{(n + (-1))/2} + (-1)) \cdot \left(2^{\frac12 \cdot \left(n + (-1)\right)} + 1\right) = (-1) + 2^{\left(-1\right) + n} |
12,902 | \cos(s) + \sin(s)\cdot 0 = \cos\left(s\right) |
30,278 | 73 h_0 x_0 = h_0^2 + x_0 h_0*72 + x_0 * x_0 - x_0^2 + h_0^2 - x_0 h_0 |
26,057 | \left(m + (-1)\right) \cdot 2 = 2 \cdot m + 2 \cdot (-1) \gt m |
19,046 | \dfrac{3}{3 + 2}*\dfrac{1}{3 + 2}3 = \frac{9}{25} = 0.36 |
32,095 | 0 \neq x \Rightarrow \frac{x}{x} = 1 |
19,143 | (x + 1)^4 - x^4 = (\left(x + 1\right) \cdot \left(x + 1\right) + x \cdot x) ((x + 1) \cdot (x + 1) - x^2) = (2x^2 + 2x + 1) \left(2x + 1\right) |
14,255 | 31 + 8 \cdot \sqrt{15} = \left(a + b \cdot \sqrt{15}\right)^2 = a^2 + 15 \cdot b^2 + 2 \cdot a \cdot b \cdot \sqrt{15} |
25,578 | x_m = C*F \Rightarrow F*C = x_m |
192 | \left(-y_0 + 2\right)^2 + (1 - y_0)^2 = y_0^2 \Rightarrow 0 = 5 + y_0^2 - y_0 \times 6 |
34,130 | b*d \coloneqq d*b |
-4,466 | x^2 + x \cdot 3 + 10 \cdot (-1) = (x + 2 \cdot \left(-1\right)) \cdot (5 + x) |
-11,956 | \frac{1}{10} 7 = \frac{1}{8 \pi} s\cdot 8 \pi = s |
6,077 | (x^2 + \sqrt{2}) \cdot (-\sqrt{2} + x^2) = x^4 + 2 \cdot (-1) |
30,825 | (f + g)\cdot 0 = \sin(0) + \cos(0) = 0 + 1 = 1 + 0 = \sin(\dfrac{\pi}{2}) + \cos(\dfrac{\pi}{2}) = (f + g)\cdot \frac{\pi}{2} |
12,305 | 1 = 1/2 + \frac14 + \dfrac18 + \ldots |
20,602 | e^{\dfrac{4}{3} \cdot \pi \cdot i} = (e^{2 \cdot i \cdot \pi/3})^2 |
-2,687 | \sqrt{6} \times (4 + 5 \times (-1) + 3) = \sqrt{6} \times 2 |
-7,142 | \frac{1}{7}*2*\frac{3}{6} = \tfrac{1}{7} |
28,076 | |x| \cdot 2 = \frac{d}{dx} \left(x \cdot |x|\right) |
-502 | \frac{\pi}{2} = -\pi \cdot 24 + 49/2 \cdot \pi |
40,618 | 5 = 4 \cdot (-1) + 9 |
-7,447 | 1/12 = \frac{3}{8} \cdot \dfrac{1}{9} \cdot 4 \cdot 5/10 |
27,204 | \sin(b)*\sin(g) + \cos(g)*\cos(b) = \cos(g - b) |
-18,254 | \frac{1}{x^2 - x*9 + 8}*(6*(-1) + x * x + 5*x) = \dfrac{(6 + x)*\left(x + (-1)\right)}{(x + (-1))*\left(x + 8*(-1)\right)} |
1,071 | (n + 1)! = n! + n! \cdot n |
-6,139 | \frac{3h}{(h + 4) (3(-1) + h)} = \frac{3h}{h \cdot h + h + 12 (-1)} |
25,636 | y\cdot b\cdot c = b\cdot c\cdot y |
34,879 | (h - c)/4 = -\frac{c}{4} + h/4 |
-20,530 | \frac{1}{1}\cdot 9\cdot \frac{7 - 4\cdot p}{-4\cdot p + 7} = \frac{-p\cdot 36 + 63}{-p\cdot 4 + 7} |
48,616 | 0.5124 = 1 - 0.4876 |
9,577 | (1 + 7)^z = 2^{z\cdot 3} |
-3,046 | 2 \cdot 3^{1 / 2} = 3^{\frac{1}{2}} \cdot \left(1 + 5 + 4 (-1)\right) |
14,043 | \frac{\binom{4}{2}}{\binom{5}{3}} = \frac{6}{10} = \frac{1}{5}*3 |
17,212 | 3\cdot x^2 + 2 = 3\cdot (x^2 + (-1)) = 3\cdot (x + \left(-1\right))\cdot \left(x + 1\right) = 3\cdot (x + (-1))\cdot (x + 4\cdot \left(-1\right)) |
7,355 | \frac{x}{\sqrt{1 + x^4}} + 0 \cdot \left(-1\right) + 0 - 0 \cdot \cdots = \dfrac{x}{\sqrt{1 + x^4}} |
-19,036 | \frac{7}{15} = \frac{1}{9*\pi}*X_s*9*\pi = X_s |
-6,095 | \dfrac{3}{5*(x + 8)} = \frac{1}{40 + 5*x}*3 |
12,197 | 1 + 2^0 + 2^1/2! + \frac{2^2}{3!} = \frac{1}{3} \cdot 11 |
24,340 | 3 \cdot a \cdot a - 12 \cdot a + 64 \cdot (-1) = 3 \cdot (16 \cdot (-1) + a^2 - a \cdot 4) + 16 \cdot (-1) |
5,995 | 4\cdot (a'^2 \pm 10\cdot b'^2 - 10\cdot b') + 10\cdot (-1) = -(b'^2\cdot 4 + 4\cdot b' + 1)\cdot 10 + 4\cdot a' \cdot a' |
20,751 | z^{\frac{1}{2}}\cdot Y^{1/2}\cdot Y^{\frac{1}{2}}\cdot z^{1/2} = z\cdot Y |
-28,798 | 150 = \tfrac{2 \cdot \pi}{\pi \cdot 2 \cdot \frac{1}{150}} |
-19,502 | 8/7*8/7 = 1/7*8/(7*1/8) |
-1,730 | -\pi = 5/6*\pi - \frac{11}{6}*\pi |
6,543 | 21 \left(-1\right) + 2014 = 1993 |
18,457 | 3 z + 4 - 2 z + 5 = z + (-1) |
-9,468 | -5 \cdot t + 20 \cdot (-1) = -5 \cdot 2 \cdot 2 - 5 \cdot t |
542 | \|z + y\|^2 = |1 + i|^2\cdot \|z\|^2 = 2\cdot \|z\|^2 = \|z\|^2 + \|y\|^2 |
20,672 | \lim_{h \to 0} \left(25\cdot (-1) + (5 + h)^2\right)/h = \lim_{h \to 0} \tfrac1h\cdot (5 + h + 5\cdot \left(-1\right))\cdot (5 + 5 + h) |
-3,248 | 7\cdot \sqrt{6} = \left(3 + 4\right)\cdot \sqrt{6} |
2,555 | 1/(3\times 2) = 1/2 - 1/3 |
-11,954 | \frac{1}{4} = \tfrac{s}{4\cdot \pi}\cdot 4\cdot \pi = s |
-2,333 | \dfrac{1}{11} \times 10 - \frac{1}{11} \times 4 = 6/11 |
3,194 | exp(H + x) = exp(H) exp(x) |
5,133 | 5/9 u = x \implies x\dfrac{9}{5} = u |
21,540 | 0.25 = \left(0.5 - 0.25\right) |
17,849 | x^{\frac{1}{3}} = x^{\frac{2}{6}} |
-23,598 | \frac{4}{35} = \frac{2}{5}\times 2/7 |
-26,972 | \sum_{n=1}^\infty \dfrac{3}{n*4^n}(3 + 1)^n = \sum_{n=1}^\infty \frac{3*4^n}{n*4^n} = \sum_{n=1}^\infty \frac{3}{n} = 3\sum_{n=1}^\infty \dfrac1n |
23,053 | \frac{c + 1}{b + 1} = \dfrac{1}{1 + b}*(1 + c) |
16,448 | y^{3\cdot \left(2 l + 3\right)} = y^{3\cdot (2 l + 1) + 6} = y^{3\cdot (2 l + 1)} y^6 |
12 | \csc{2\cdot s} - \cot{2\cdot s} = \tan{s} |
-26,410 | \tfrac{1}{a^3} a^5 = a^{5 - 3} = a^{5 + 3 \left(-1\right)} = a^2 |
10,794 | 0 = \frac{1}{2} + X_2\Longrightarrow -1/2 = X_2 |
19,390 | 0 = a * a m - a^2 + 1 - m \Rightarrow ((-1) + m) (a^2 + (-1)) = 0 |
11,548 | t + t = (t + t)^2 = (t + t)\cdot (t + t) = t^2 + t^2 + t^2 + t^2 = t + t + t + t |
7,937 | c^{p + x} = c^x \cdot c^p |
3,055 | |x| + 3 \cdot (-1) = 3 \cdot \left(-1\right) + |-x| |
27,063 | (1/2 + c)^k + (g + 1/2)^k = \frac{1}{2^k}\cdot (\left(1 + c\cdot 2\right)^k + \left(1 + g\cdot 2\right)^k) |
22,323 | (m + (-1))\cdot (m + 3) = m^2 + 2\cdot m + 3\cdot (-1) |
14,700 | \frac{1}{x^2 + 3 \cdot (-1)} \cdot (1 + 3 \cdot x^2) + 3 \cdot (-1) = \dfrac{10}{x^2 + 3 \cdot \left(-1\right)} |
18,563 | \sin(x \cdot 4) = -\sin(x) \cdot \cos(x) \cdot 4 + \cos^3(x) \cdot \sin(x) \cdot 8 |
5,950 | E[E[X]] = E[X] |
14,690 | -10 z = 1 +- \sqrt{4z^4 - 4z^2 + 1} = 1 +- \sqrt{(2z^2 + (-1))^2} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.