id
int64
-30,985
55.9k
text
stringlengths
5
437k
17,599
X^3 + 1 = \left(1 + X\right)\times (X^2 - X + 1)
-9,342
p \cdot 27 = 3 \cdot 3 \cdot 3 p
42,463
1=1*8-1*7=1*8-1*(23-2*8)
33,375
(3 \cdot z + 2 \cdot (-1)) \cdot \left(5 + z\right) = 10 \cdot (-1) + 3 \cdot z^2 + z \cdot 13
14,024
-\dfrac{1}{\tau} = 5*i = 25*\tau
-2,610
\sqrt{250} - \sqrt{40} = \sqrt{25 \cdot 10} - \sqrt{4 \cdot 10}
12,947
30 \cdot 7!/9! = \frac{30}{72} = \frac{5}{12}
17,338
2\cdot (a + \frac{1}{2}\cdot (z + y)) = y + a + z + a
-26,515
(3*(-1) + 5*x)^2 = 9 + 25*x^2 - 30*x
-7,601
\dfrac{-7+22i}{3-2i} = \dfrac{-7+22i}{3-2i} \cdot \dfrac{{3+2i}}{{3+2i}}
8,512
x a + b x = \left(b + a\right) x
34,492
\frac12\cdot (\left(-1\right)\cdot \pi) = -\dfrac{\pi}{2}
-7,116
1/6 = \frac39*\frac{4}{8}
-2,076
13/12 \cdot \pi = \pi/3 + \pi \cdot 3/4
10,817
\frac16(q^6 + q + q \cdot q + q^3 + q^4 + q^5) = q\cdot (q^5 + 1 + q + q \cdot q + q^3 + q^4)/6
5,187
(1 - x)\cdot \left(1 + x\right) = -x^2 + 1
25,968
z \cdot 4\% = z \cdot 0.04
-557
\tfrac{1}{12}\cdot \pi = -\pi\cdot 24 + \dfrac{289}{12}\cdot \pi
7,004
(-\pi + x) (x - e) = \pi e + x^2 - x*(\pi + e)
20,508
503\cdot 497 = (500 + 3)\cdot (500 + 3\cdot (-1)) = 500^2 - 3 \cdot 3 = 250000 + 9\cdot (-1) = 249991
18,763
z = x + i\cdot y \Rightarrow -x + z = i\cdot y
31,383
4 \cdot V \cdot r \cdot x^2 = x \cdot r \cdot 2 \cdot 2 \cdot x \cdot V
30,959
\left((-1) + y\right)^2 + 1 = 2 + y^2 - 2\cdot y
-22,714
10\cdot 4/(4\cdot 9) = 40/36
-5,441
2.36 \cdot 10 = \dfrac{10}{1000} \cdot 2.36 = 2.36/100
29,047
(2^{(n + (-1))/2} + (-1)) \cdot \left(2^{\frac12 \cdot \left(n + (-1)\right)} + 1\right) = (-1) + 2^{\left(-1\right) + n}
12,902
\cos(s) + \sin(s)\cdot 0 = \cos\left(s\right)
30,278
73 h_0 x_0 = h_0^2 + x_0 h_0*72 + x_0 * x_0 - x_0^2 + h_0^2 - x_0 h_0
26,057
\left(m + (-1)\right) \cdot 2 = 2 \cdot m + 2 \cdot (-1) \gt m
19,046
\dfrac{3}{3 + 2}*\dfrac{1}{3 + 2}3 = \frac{9}{25} = 0.36
32,095
0 \neq x \Rightarrow \frac{x}{x} = 1
19,143
(x + 1)^4 - x^4 = (\left(x + 1\right) \cdot \left(x + 1\right) + x \cdot x) ((x + 1) \cdot (x + 1) - x^2) = (2x^2 + 2x + 1) \left(2x + 1\right)
14,255
31 + 8 \cdot \sqrt{15} = \left(a + b \cdot \sqrt{15}\right)^2 = a^2 + 15 \cdot b^2 + 2 \cdot a \cdot b \cdot \sqrt{15}
25,578
x_m = C*F \Rightarrow F*C = x_m
192
\left(-y_0 + 2\right)^2 + (1 - y_0)^2 = y_0^2 \Rightarrow 0 = 5 + y_0^2 - y_0 \times 6
34,130
b*d \coloneqq d*b
-4,466
x^2 + x \cdot 3 + 10 \cdot (-1) = (x + 2 \cdot \left(-1\right)) \cdot (5 + x)
-11,956
\frac{1}{10} 7 = \frac{1}{8 \pi} s\cdot 8 \pi = s
6,077
(x^2 + \sqrt{2}) \cdot (-\sqrt{2} + x^2) = x^4 + 2 \cdot (-1)
30,825
(f + g)\cdot 0 = \sin(0) + \cos(0) = 0 + 1 = 1 + 0 = \sin(\dfrac{\pi}{2}) + \cos(\dfrac{\pi}{2}) = (f + g)\cdot \frac{\pi}{2}
12,305
1 = 1/2 + \frac14 + \dfrac18 + \ldots
20,602
e^{\dfrac{4}{3} \cdot \pi \cdot i} = (e^{2 \cdot i \cdot \pi/3})^2
-2,687
\sqrt{6} \times (4 + 5 \times (-1) + 3) = \sqrt{6} \times 2
-7,142
\frac{1}{7}*2*\frac{3}{6} = \tfrac{1}{7}
28,076
|x| \cdot 2 = \frac{d}{dx} \left(x \cdot |x|\right)
-502
\frac{\pi}{2} = -\pi \cdot 24 + 49/2 \cdot \pi
40,618
5 = 4 \cdot (-1) + 9
-7,447
1/12 = \frac{3}{8} \cdot \dfrac{1}{9} \cdot 4 \cdot 5/10
27,204
\sin(b)*\sin(g) + \cos(g)*\cos(b) = \cos(g - b)
-18,254
\frac{1}{x^2 - x*9 + 8}*(6*(-1) + x * x + 5*x) = \dfrac{(6 + x)*\left(x + (-1)\right)}{(x + (-1))*\left(x + 8*(-1)\right)}
1,071
(n + 1)! = n! + n! \cdot n
-6,139
\frac{3h}{(h + 4) (3(-1) + h)} = \frac{3h}{h \cdot h + h + 12 (-1)}
25,636
y\cdot b\cdot c = b\cdot c\cdot y
34,879
(h - c)/4 = -\frac{c}{4} + h/4
-20,530
\frac{1}{1}\cdot 9\cdot \frac{7 - 4\cdot p}{-4\cdot p + 7} = \frac{-p\cdot 36 + 63}{-p\cdot 4 + 7}
48,616
0.5124 = 1 - 0.4876
9,577
(1 + 7)^z = 2^{z\cdot 3}
-3,046
2 \cdot 3^{1 / 2} = 3^{\frac{1}{2}} \cdot \left(1 + 5 + 4 (-1)\right)
14,043
\frac{\binom{4}{2}}{\binom{5}{3}} = \frac{6}{10} = \frac{1}{5}*3
17,212
3\cdot x^2 + 2 = 3\cdot (x^2 + (-1)) = 3\cdot (x + \left(-1\right))\cdot \left(x + 1\right) = 3\cdot (x + (-1))\cdot (x + 4\cdot \left(-1\right))
7,355
\frac{x}{\sqrt{1 + x^4}} + 0 \cdot \left(-1\right) + 0 - 0 \cdot \cdots = \dfrac{x}{\sqrt{1 + x^4}}
-19,036
\frac{7}{15} = \frac{1}{9*\pi}*X_s*9*\pi = X_s
-6,095
\dfrac{3}{5*(x + 8)} = \frac{1}{40 + 5*x}*3
12,197
1 + 2^0 + 2^1/2! + \frac{2^2}{3!} = \frac{1}{3} \cdot 11
24,340
3 \cdot a \cdot a - 12 \cdot a + 64 \cdot (-1) = 3 \cdot (16 \cdot (-1) + a^2 - a \cdot 4) + 16 \cdot (-1)
5,995
4\cdot (a'^2 \pm 10\cdot b'^2 - 10\cdot b') + 10\cdot (-1) = -(b'^2\cdot 4 + 4\cdot b' + 1)\cdot 10 + 4\cdot a' \cdot a'
20,751
z^{\frac{1}{2}}\cdot Y^{1/2}\cdot Y^{\frac{1}{2}}\cdot z^{1/2} = z\cdot Y
-28,798
150 = \tfrac{2 \cdot \pi}{\pi \cdot 2 \cdot \frac{1}{150}}
-19,502
8/7*8/7 = 1/7*8/(7*1/8)
-1,730
-\pi = 5/6*\pi - \frac{11}{6}*\pi
6,543
21 \left(-1\right) + 2014 = 1993
18,457
3 z + 4 - 2 z + 5 = z + (-1)
-9,468
-5 \cdot t + 20 \cdot (-1) = -5 \cdot 2 \cdot 2 - 5 \cdot t
542
\|z + y\|^2 = |1 + i|^2\cdot \|z\|^2 = 2\cdot \|z\|^2 = \|z\|^2 + \|y\|^2
20,672
\lim_{h \to 0} \left(25\cdot (-1) + (5 + h)^2\right)/h = \lim_{h \to 0} \tfrac1h\cdot (5 + h + 5\cdot \left(-1\right))\cdot (5 + 5 + h)
-3,248
7\cdot \sqrt{6} = \left(3 + 4\right)\cdot \sqrt{6}
2,555
1/(3\times 2) = 1/2 - 1/3
-11,954
\frac{1}{4} = \tfrac{s}{4\cdot \pi}\cdot 4\cdot \pi = s
-2,333
\dfrac{1}{11} \times 10 - \frac{1}{11} \times 4 = 6/11
3,194
exp(H + x) = exp(H) exp(x)
5,133
5/9 u = x \implies x\dfrac{9}{5} = u
21,540
0.25 = \left(0.5 - 0.25\right)
17,849
x^{\frac{1}{3}} = x^{\frac{2}{6}}
-23,598
\frac{4}{35} = \frac{2}{5}\times 2/7
-26,972
\sum_{n=1}^\infty \dfrac{3}{n*4^n}(3 + 1)^n = \sum_{n=1}^\infty \frac{3*4^n}{n*4^n} = \sum_{n=1}^\infty \frac{3}{n} = 3\sum_{n=1}^\infty \dfrac1n
23,053
\frac{c + 1}{b + 1} = \dfrac{1}{1 + b}*(1 + c)
16,448
y^{3\cdot \left(2 l + 3\right)} = y^{3\cdot (2 l + 1) + 6} = y^{3\cdot (2 l + 1)} y^6
12
\csc{2\cdot s} - \cot{2\cdot s} = \tan{s}
-26,410
\tfrac{1}{a^3} a^5 = a^{5 - 3} = a^{5 + 3 \left(-1\right)} = a^2
10,794
0 = \frac{1}{2} + X_2\Longrightarrow -1/2 = X_2
19,390
0 = a * a m - a^2 + 1 - m \Rightarrow ((-1) + m) (a^2 + (-1)) = 0
11,548
t + t = (t + t)^2 = (t + t)\cdot (t + t) = t^2 + t^2 + t^2 + t^2 = t + t + t + t
7,937
c^{p + x} = c^x \cdot c^p
3,055
|x| + 3 \cdot (-1) = 3 \cdot \left(-1\right) + |-x|
27,063
(1/2 + c)^k + (g + 1/2)^k = \frac{1}{2^k}\cdot (\left(1 + c\cdot 2\right)^k + \left(1 + g\cdot 2\right)^k)
22,323
(m + (-1))\cdot (m + 3) = m^2 + 2\cdot m + 3\cdot (-1)
14,700
\frac{1}{x^2 + 3 \cdot (-1)} \cdot (1 + 3 \cdot x^2) + 3 \cdot (-1) = \dfrac{10}{x^2 + 3 \cdot \left(-1\right)}
18,563
\sin(x \cdot 4) = -\sin(x) \cdot \cos(x) \cdot 4 + \cos^3(x) \cdot \sin(x) \cdot 8
5,950
E[E[X]] = E[X]
14,690
-10 z = 1 +- \sqrt{4z^4 - 4z^2 + 1} = 1 +- \sqrt{(2z^2 + (-1))^2}