id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
17,700 | (-g + z)^2 = (z - g) (z - g) |
4,450 | (-1) + 6\cdot n^2 + n = \left(1 + n\cdot 2\right)\cdot (n\cdot 3 + (-1)) |
22,967 | l + 1 = -(l + (-1)) + l\cdot 2 |
30,133 | \frac{\binom{68}{8}}{\binom{80}{20}} = 51/24391353490 |
-2,662 | (5 + 3\cdot (-1))\cdot 7^{\frac{1}{2}} = 2\cdot 7^{1 / 2} |
13,844 | n\cdot 2 + 1 = 11 + 5\cdot \left(-1\right) + 3\cdot (-1) + n\cdot 2 + 2\cdot (-1) |
37,784 | 2*l + (-1) + 2 = 2*l + 1 = 2*(l + 1) + (-1) |
-15,809 | \frac{1}{10} \cdot 28 = -5 \cdot \frac{1}{10} \cdot 4 + 8 \cdot \frac{6}{10} |
13,522 | z_1\cdot z_2 = 0\Longrightarrow 0 = z_1\text{ or }z_2 = 0 |
11,919 | \left(\left(2 (-1) + z*2 = z/2 \Rightarrow z = 4 (-1) + 4 z\right) \Rightarrow 4 = 3 z\right) \Rightarrow 4/3 = z |
-4,931 | 10^5\cdot 29.4 = 29.4\cdot 10^{0 + 5} |
-25,510 | \frac{d}{dp} (\dfrac{4}{2 + p}) = -\frac{1}{(2 + p)^2}\cdot 4 |
10,038 | \frac{1}{1!\cdot 2^1}(-1)^1 = -1/2 |
29,597 | (x + 1) \times (x + 1) = x^2 + 2\times x + 1 = x \times x + 1 |
-536 | \frac12 \cdot 3 \cdot \pi = -16 \cdot \pi + 35/2 \cdot \pi |
-2,147 | -5/12 \pi = 7/6 \pi - 19/12 \pi |
12,256 | \frac{\partial}{\partial y} e^{i \cdot l \cdot y} = e^{y \cdot l \cdot i} \cdot l \cdot i |
13,892 | (-1) + m^4 = ((-1) + m)*(1 + m^2)*(m + 1) |
-19,420 | \dfrac32\cdot 6/1 = \frac{1}{\frac16}\cdot \frac{3}{2} |
13,576 | V^{(-1) + i} = \frac{V^i}{V} |
36,555 | 0 + \frac13 + \frac12 = 5/6 |
-19,517 | \frac65\cdot \frac19\cdot 2 = 6\cdot 2/\left(5\cdot 9\right) = \dfrac{12}{45} |
-6,191 | \frac{p + 5\cdot (-1)}{p + 5\cdot (-1)}\cdot \frac{1}{2\cdot (p + 5\cdot (-1))}\cdot 2 = \frac{2\cdot (p + 5\cdot (-1))}{(5\cdot \left(-1\right) + p)\cdot \left(p + 5\cdot (-1)\right)\cdot 2} |
-4,646 | (x + 5) \cdot (4 + x) = x^2 + 9 \cdot x + 20 |
-22,198 | ((-1) + a) \left(a + 3(-1)\right) = a^2 - 4a + 3 |
12,991 | 2^2 + 4 \cdot 4 \cdot 2 = 4 \cdot 3^2 |
2,936 | \frac12*g * g - \frac12*a^2 = (g^2 - a^2)/2 |
17,546 | 49/100 = \frac{7}{10}*\frac{1}{10}*7 |
16,298 | \left( 5\cdot x + 5\cdot z, 5\cdot x + 5\cdot z\right) + \left( 2\cdot x - 2\cdot z, 2\cdot z - 2\cdot x\right) = ( 7\cdot x + 3\cdot z, 7\cdot z + 3\cdot x) = \left( 7\cdot x + 3\cdot z, 3\cdot x + 7\cdot z\right) |
10,114 | \mathbb{Var}\left[X + Y\right] = \mathbb{Var}\left[X\right] + \mathbb{Var}\left[Y\right] + 2\mathbb{Cov}\left[X, Y\right] = \mathbb{Var}\left[X\right] + \mathbb{Var}\left[Y\right] |
14,875 | {100 + 10 (-1) + 21 (-1) + 3 \choose 3} = {72 \choose 3} |
-16,803 | -3*z = -3*z*3*z + -3*z*8 = -9*z^2 - 24*z = -9*z^2 - 24*z |
-22,324 | (y + 8\left(-1\right)) (y + 9) = 72 (-1) + y^2 + y |
4,363 | 1 + \cos(y) = 1 + 2\cos^2(\frac{y}{2}) + (-1) = 2\cos^2(y/2) |
-24,448 | \frac{1}{8 + 7}\cdot 135 = 135/15 = 135/15 = 9 |
-6,691 | \frac{50}{100} + \frac{1}{100} = \dfrac{1}{100} + 5/10 |
13,096 | ((-1) + x^4) \cdot (x^4 + 1) = x^8 + (-1) |
12,013 | (g + b)\cdot (g + b) = g + g\cdot b + b\cdot g + b = g + b |
15,644 | x + 3 - 10 + x^2 - 7*x = -x^2 + 8*x + 7*(-1) |
25,998 | 2 + (z + (-1))^4 + 3\cdot (z + (-1))^2 = 5 + (z + \left(-1\right))^4 + z^2\cdot 3 - z\cdot 6 |
28,270 | 1575 = \frac{1}{4 \cdot 4!^2} \cdot 10! |
16,819 | 5\cdot 23 = (-5) (-23) |
16,443 | B + E = E + B |
32,120 | 4^2 + 3^2*27 = 259 |
-5,325 | 1.2 \cdot 10^2 = 10^{2 + 0 \cdot (-1)} \cdot 1.2 |
-24,352 | \frac{3}{1 + 2} = \frac{3}{3} = \frac{3}{3} = 1 |
350 | 3 + (3!)!/\left(3!\cdot 3!\right) = 23 |
45,200 | 1 \times 2 + 6 = 8 = 176 + 168 \times (-1) |
1,450 | 2014 \cdot \pi/12 - 84 \cdot 2 \cdot \pi = (\pi \cdot (-1))/6 |
-27,592 | 4\cdot \frac19/4 = 1/9 |
5,795 | n\cdot 2^{n + (-1)} = (\sum_{i=0}^n {n \choose i})\cdot i = (\sum_{i=1}^n {n \choose i})\cdot i |
29,040 | \frac{1 - z^{q + 1}}{-z + 1} = 1 + z + z z + z^3 + \dotsm + z^q |
14,773 | 3/10\cdot 7/8\cdot \frac29 = 7/120 |
4,544 | x_1*m*S*h + S*m*x_2 = S*(h*x_1*m + x_2*m) |
36,733 | \frac{1}{l^x}\cdot l^k = l^{k - x} |
35,605 | (b + b)*b + b*\left(b + b\right) = (b + b)*(b + b) |
27,095 | \left|{A \cdot B \cdot C + x}\right| = \left|{B \cdot C \cdot A + x}\right| |
34,487 | X^5 = I \Rightarrow 0 = X^5 - I |
40,492 | e^{iz} = e^{iz} |
15,161 | \frac{x^3 + (-1)}{\left(-1\right) + x} = x \cdot x + x + 1 |
32,479 | 0 = e^{j \cdot 2} + 1 + j \cdot 2 \Rightarrow e^{j \cdot 2} = (-1) - j \cdot 2 |
4,680 | (-1) + \left(z + 1\right) \cdot \left(z + 1\right) = (-1) + z^2 + z \cdot 2 + 1 |
38,258 | 1 - \frac{1}{(m + 1)!} + \frac{m + 1}{\left(m + 2\right)!} = 1 - \dfrac{m + 2}{\left(m + 2\right)!} + \tfrac{1}{(m + 2)!}*(m + 1) = 1 - \frac{1}{(m + 2)!} |
-23,263 | -\dfrac25 + 1 = 3/5 |
9,042 | 9 = -4 \times p \Rightarrow p = -\frac{9}{4} |
14,090 | \sin(2 u) = \sin(u) \cos\left(u\right)*2 |
36,667 | 3^m - x_{m + \left(-1\right)} = 3^m - (3^m + \left(-1\right))/2 = (3^m + 1)/2 = x_{m + (-1)} + 1 |
16,253 | w*(-x) = -wx |
2,638 | \sqrt{99^2 + 16\cdot n} = \sqrt{9801 + 16\cdot n} |
4,564 | r < s \implies s - r > 0 |
15,523 | x^2 + x^2 - 2\cdot x\cdot y + y \cdot y - x \cdot x - y\cdot x = x^2 + y^2 - y\cdot x |
-30,897 | 3\cdot d + 8\cdot (-1) = 8\cdot (-1) + 3\cdot d |
905 | b^2 + 0 \cdot b^1 + 0 \cdot b^0 = 4 \Rightarrow 2 = b |
-10,791 | 28 = \frac{1}{6} 168 |
1,876 | \frac{x}{5} + \frac{1}{4} = \frac{1}{20}*(4*x + 5) |
32,313 | \binom{n}{1} + (-1) = n + \left(-1\right) |
18,920 | \left(e/2\right)^m = e^m \cdot (\frac{1}{2})^m |
-2,051 | 5/6*\pi + \frac{5}{12}*\pi = \frac{5}{4}*\pi |
1,994 | 4(5y)^2 = y^2\cdot 100 |
-182 | \frac{1}{(4 (-1) + 8)!} 8! = 8*7*6*5 |
24,875 | z = 3\Longrightarrow z \in ]3,4] |
21,105 | |y| \lt 2 \Rightarrow 1 > |y/2| |
-25,836 | y^2*4 + 2y + 1 = \dfrac{1}{y + 4(-1)}(4y^3 - 14 y^2 - y*7 + 4(-1)) |
-26,373 | -32 = (-2)\cdot (-2)\cdot (-2)\cdot \left(-2\right)\cdot (-2) |
18,030 | 3 \cdot (x + 1) = ((1 + x) \cdot 3 + 2.5) \cdot x\Longrightarrow x = \frac{1}{3} \cdot 2 |
19,216 | \mathbb{E}\left(\cos\left(y + z\right)\right) = -\mathbb{E}\left(\sin{y} \times \sin{z}\right) + \mathbb{E}\left(\cos{z} \times \cos{y}\right) |
-596 | 92/3*\pi - 30*\pi = \pi*\frac13*2 |
18,271 | h\cdot (x - B) = -B\cdot h + x\cdot h |
9,299 | u = u - P(u) + P(u) |
-25,828 | x^2*2 - x + 3 + \frac{2}{6*(-1) + x} = \dfrac{1}{x + 6*(-1)}*\left(16*(-1) + 2*x^3 - 13*x^2 + x*9\right) |
20,128 | \left(a^4 + 3 \cdot a^3 - 3 \cdot a + 1 = a^4 + 3 \cdot a + 2 \cdot (-1) \implies a^3 - 2 \cdot a + 1 = 0\right) \implies (a + (-1)) \cdot (a^2 + a + (-1)) = 0 |
1,590 | g \cdot d \cdot Y \Rightarrow Y \cdot g \cdot d |
22,425 | (10\cdot \left(-1\right)\cdot \dfrac{1}{6})/3 = -5/9 |
-16,500 | \sqrt{4 \cdot 3} \cdot 3 = \sqrt{12} \cdot 3 |
-1,113 | -35/35 = ((-35)*1/35)/(35*\frac{1}{35}) = -1 |
13,956 | y_0*a_1 + y_1 = y_1 + a_1*y_0 |
10,459 | x^2 + x = (x+1/2)^2 - 1/4 |
10,628 | y + 1 = y^2 + y - y^2 + (-1) |
8,382 | 49 = 3 + 3\cdot 11 + 13 |
20,466 | \dfrac{1}{\frac{1}{1/(1/25)}} = 5^{-2\cdot (-(-1)\cdot (-1))} = 5 \cdot 5 = 25 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.