id
int64
-30,985
55.9k
text
stringlengths
5
437k
17,700
(-g + z)^2 = (z - g) (z - g)
4,450
(-1) + 6\cdot n^2 + n = \left(1 + n\cdot 2\right)\cdot (n\cdot 3 + (-1))
22,967
l + 1 = -(l + (-1)) + l\cdot 2
30,133
\frac{\binom{68}{8}}{\binom{80}{20}} = 51/24391353490
-2,662
(5 + 3\cdot (-1))\cdot 7^{\frac{1}{2}} = 2\cdot 7^{1 / 2}
13,844
n\cdot 2 + 1 = 11 + 5\cdot \left(-1\right) + 3\cdot (-1) + n\cdot 2 + 2\cdot (-1)
37,784
2*l + (-1) + 2 = 2*l + 1 = 2*(l + 1) + (-1)
-15,809
\frac{1}{10} \cdot 28 = -5 \cdot \frac{1}{10} \cdot 4 + 8 \cdot \frac{6}{10}
13,522
z_1\cdot z_2 = 0\Longrightarrow 0 = z_1\text{ or }z_2 = 0
11,919
\left(\left(2 (-1) + z*2 = z/2 \Rightarrow z = 4 (-1) + 4 z\right) \Rightarrow 4 = 3 z\right) \Rightarrow 4/3 = z
-4,931
10^5\cdot 29.4 = 29.4\cdot 10^{0 + 5}
-25,510
\frac{d}{dp} (\dfrac{4}{2 + p}) = -\frac{1}{(2 + p)^2}\cdot 4
10,038
\frac{1}{1!\cdot 2^1}(-1)^1 = -1/2
29,597
(x + 1) \times (x + 1) = x^2 + 2\times x + 1 = x \times x + 1
-536
\frac12 \cdot 3 \cdot \pi = -16 \cdot \pi + 35/2 \cdot \pi
-2,147
-5/12 \pi = 7/6 \pi - 19/12 \pi
12,256
\frac{\partial}{\partial y} e^{i \cdot l \cdot y} = e^{y \cdot l \cdot i} \cdot l \cdot i
13,892
(-1) + m^4 = ((-1) + m)*(1 + m^2)*(m + 1)
-19,420
\dfrac32\cdot 6/1 = \frac{1}{\frac16}\cdot \frac{3}{2}
13,576
V^{(-1) + i} = \frac{V^i}{V}
36,555
0 + \frac13 + \frac12 = 5/6
-19,517
\frac65\cdot \frac19\cdot 2 = 6\cdot 2/\left(5\cdot 9\right) = \dfrac{12}{45}
-6,191
\frac{p + 5\cdot (-1)}{p + 5\cdot (-1)}\cdot \frac{1}{2\cdot (p + 5\cdot (-1))}\cdot 2 = \frac{2\cdot (p + 5\cdot (-1))}{(5\cdot \left(-1\right) + p)\cdot \left(p + 5\cdot (-1)\right)\cdot 2}
-4,646
(x + 5) \cdot (4 + x) = x^2 + 9 \cdot x + 20
-22,198
((-1) + a) \left(a + 3(-1)\right) = a^2 - 4a + 3
12,991
2^2 + 4 \cdot 4 \cdot 2 = 4 \cdot 3^2
2,936
\frac12*g * g - \frac12*a^2 = (g^2 - a^2)/2
17,546
49/100 = \frac{7}{10}*\frac{1}{10}*7
16,298
\left( 5\cdot x + 5\cdot z, 5\cdot x + 5\cdot z\right) + \left( 2\cdot x - 2\cdot z, 2\cdot z - 2\cdot x\right) = ( 7\cdot x + 3\cdot z, 7\cdot z + 3\cdot x) = \left( 7\cdot x + 3\cdot z, 3\cdot x + 7\cdot z\right)
10,114
\mathbb{Var}\left[X + Y\right] = \mathbb{Var}\left[X\right] + \mathbb{Var}\left[Y\right] + 2\mathbb{Cov}\left[X, Y\right] = \mathbb{Var}\left[X\right] + \mathbb{Var}\left[Y\right]
14,875
{100 + 10 (-1) + 21 (-1) + 3 \choose 3} = {72 \choose 3}
-16,803
-3*z = -3*z*3*z + -3*z*8 = -9*z^2 - 24*z = -9*z^2 - 24*z
-22,324
(y + 8\left(-1\right)) (y + 9) = 72 (-1) + y^2 + y
4,363
1 + \cos(y) = 1 + 2\cos^2(\frac{y}{2}) + (-1) = 2\cos^2(y/2)
-24,448
\frac{1}{8 + 7}\cdot 135 = 135/15 = 135/15 = 9
-6,691
\frac{50}{100} + \frac{1}{100} = \dfrac{1}{100} + 5/10
13,096
((-1) + x^4) \cdot (x^4 + 1) = x^8 + (-1)
12,013
(g + b)\cdot (g + b) = g + g\cdot b + b\cdot g + b = g + b
15,644
x + 3 - 10 + x^2 - 7*x = -x^2 + 8*x + 7*(-1)
25,998
2 + (z + (-1))^4 + 3\cdot (z + (-1))^2 = 5 + (z + \left(-1\right))^4 + z^2\cdot 3 - z\cdot 6
28,270
1575 = \frac{1}{4 \cdot 4!^2} \cdot 10!
16,819
5\cdot 23 = (-5) (-23)
16,443
B + E = E + B
32,120
4^2 + 3^2*27 = 259
-5,325
1.2 \cdot 10^2 = 10^{2 + 0 \cdot (-1)} \cdot 1.2
-24,352
\frac{3}{1 + 2} = \frac{3}{3} = \frac{3}{3} = 1
350
3 + (3!)!/\left(3!\cdot 3!\right) = 23
45,200
1 \times 2 + 6 = 8 = 176 + 168 \times (-1)
1,450
2014 \cdot \pi/12 - 84 \cdot 2 \cdot \pi = (\pi \cdot (-1))/6
-27,592
4\cdot \frac19/4 = 1/9
5,795
n\cdot 2^{n + (-1)} = (\sum_{i=0}^n {n \choose i})\cdot i = (\sum_{i=1}^n {n \choose i})\cdot i
29,040
\frac{1 - z^{q + 1}}{-z + 1} = 1 + z + z z + z^3 + \dotsm + z^q
14,773
3/10\cdot 7/8\cdot \frac29 = 7/120
4,544
x_1*m*S*h + S*m*x_2 = S*(h*x_1*m + x_2*m)
36,733
\frac{1}{l^x}\cdot l^k = l^{k - x}
35,605
(b + b)*b + b*\left(b + b\right) = (b + b)*(b + b)
27,095
\left|{A \cdot B \cdot C + x}\right| = \left|{B \cdot C \cdot A + x}\right|
34,487
X^5 = I \Rightarrow 0 = X^5 - I
40,492
e^{iz} = e^{iz}
15,161
\frac{x^3 + (-1)}{\left(-1\right) + x} = x \cdot x + x + 1
32,479
0 = e^{j \cdot 2} + 1 + j \cdot 2 \Rightarrow e^{j \cdot 2} = (-1) - j \cdot 2
4,680
(-1) + \left(z + 1\right) \cdot \left(z + 1\right) = (-1) + z^2 + z \cdot 2 + 1
38,258
1 - \frac{1}{(m + 1)!} + \frac{m + 1}{\left(m + 2\right)!} = 1 - \dfrac{m + 2}{\left(m + 2\right)!} + \tfrac{1}{(m + 2)!}*(m + 1) = 1 - \frac{1}{(m + 2)!}
-23,263
-\dfrac25 + 1 = 3/5
9,042
9 = -4 \times p \Rightarrow p = -\frac{9}{4}
14,090
\sin(2 u) = \sin(u) \cos\left(u\right)*2
36,667
3^m - x_{m + \left(-1\right)} = 3^m - (3^m + \left(-1\right))/2 = (3^m + 1)/2 = x_{m + (-1)} + 1
16,253
w*(-x) = -wx
2,638
\sqrt{99^2 + 16\cdot n} = \sqrt{9801 + 16\cdot n}
4,564
r < s \implies s - r > 0
15,523
x^2 + x^2 - 2\cdot x\cdot y + y \cdot y - x \cdot x - y\cdot x = x^2 + y^2 - y\cdot x
-30,897
3\cdot d + 8\cdot (-1) = 8\cdot (-1) + 3\cdot d
905
b^2 + 0 \cdot b^1 + 0 \cdot b^0 = 4 \Rightarrow 2 = b
-10,791
28 = \frac{1}{6} 168
1,876
\frac{x}{5} + \frac{1}{4} = \frac{1}{20}*(4*x + 5)
32,313
\binom{n}{1} + (-1) = n + \left(-1\right)
18,920
\left(e/2\right)^m = e^m \cdot (\frac{1}{2})^m
-2,051
5/6*\pi + \frac{5}{12}*\pi = \frac{5}{4}*\pi
1,994
4(5y)^2 = y^2\cdot 100
-182
\frac{1}{(4 (-1) + 8)!} 8! = 8*7*6*5
24,875
z = 3\Longrightarrow z \in ]3,4]
21,105
|y| \lt 2 \Rightarrow 1 > |y/2|
-25,836
y^2*4 + 2y + 1 = \dfrac{1}{y + 4(-1)}(4y^3 - 14 y^2 - y*7 + 4(-1))
-26,373
-32 = (-2)\cdot (-2)\cdot (-2)\cdot \left(-2\right)\cdot (-2)
18,030
3 \cdot (x + 1) = ((1 + x) \cdot 3 + 2.5) \cdot x\Longrightarrow x = \frac{1}{3} \cdot 2
19,216
\mathbb{E}\left(\cos\left(y + z\right)\right) = -\mathbb{E}\left(\sin{y} \times \sin{z}\right) + \mathbb{E}\left(\cos{z} \times \cos{y}\right)
-596
92/3*\pi - 30*\pi = \pi*\frac13*2
18,271
h\cdot (x - B) = -B\cdot h + x\cdot h
9,299
u = u - P(u) + P(u)
-25,828
x^2*2 - x + 3 + \frac{2}{6*(-1) + x} = \dfrac{1}{x + 6*(-1)}*\left(16*(-1) + 2*x^3 - 13*x^2 + x*9\right)
20,128
\left(a^4 + 3 \cdot a^3 - 3 \cdot a + 1 = a^4 + 3 \cdot a + 2 \cdot (-1) \implies a^3 - 2 \cdot a + 1 = 0\right) \implies (a + (-1)) \cdot (a^2 + a + (-1)) = 0
1,590
g \cdot d \cdot Y \Rightarrow Y \cdot g \cdot d
22,425
(10\cdot \left(-1\right)\cdot \dfrac{1}{6})/3 = -5/9
-16,500
\sqrt{4 \cdot 3} \cdot 3 = \sqrt{12} \cdot 3
-1,113
-35/35 = ((-35)*1/35)/(35*\frac{1}{35}) = -1
13,956
y_0*a_1 + y_1 = y_1 + a_1*y_0
10,459
x^2 + x = (x+1/2)^2 - 1/4
10,628
y + 1 = y^2 + y - y^2 + (-1)
8,382
49 = 3 + 3\cdot 11 + 13
20,466
\dfrac{1}{\frac{1}{1/(1/25)}} = 5^{-2\cdot (-(-1)\cdot (-1))} = 5 \cdot 5 = 25