id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
6,226 | 256 \cdot 256^2 - 255^3 = 195841 = 22^3 + 57^3 = 9^3 + 58^3 |
-2,970 | 7\cdot 11^{\dfrac{1}{2}} = 11^{1 / 2}\cdot (4 + 2(-1) + 5) |
-24,981 | 4\cdot 2.5={10} |
15,609 | \frac{1}{10^2}*(10 - 2*3)^2 = \frac{1}{10^2}*4^2 = 0.16 |
-15,989 | -\frac{1}{10}*28 = -6*\frac{8}{10} + 10*2/10 |
5,998 | |25\cdot (-1) + x^2| = |(x + 5)\cdot (x + 5\cdot (-1))| |
-25,799 | \frac{7}{10 \cdot 2} = \frac{1}{20} \cdot 7 |
1,532 | \frac{\pi^2}{6} = 1 + 1/4 + 1/9 + \dots |
30,702 | f_1 - b - f_2 = -b + f_1 + f_2 |
25,919 | n^7 - n = n^7 - n^5 + n^5 - n * n^2 + n^3 - n = (n^4 + n^2 + 1)*(n^3 - n) |
28,190 | \lambda^2 - a^2 = (-a + \lambda)\cdot (a + \lambda) |
29,998 | \left(1 - 2x + 3x * x - 4x^3 + \ldots\right)^{\frac12} = \frac{1}{1 + x} = 1 - x + x^2 - x^3 + \ldots |
2,209 | 1 + x^2 - 2x = ((-1) + x)^2 |
-9,501 | -2*2*2*3 y + 2*3*5 = -y*24 + 30 |
26,234 | (1 + n)*(\left(-1\right) + n) + 1 = n^2 |
28,768 | f \cdot x + g_1 \cdot g_2 = f \cdot x + g_1 \cdot g_2 |
-2,188 | 7/12 - \dfrac{1}{12}3 = \frac{1}{12}4 |
5,804 | \sqrt{\left(x + 3\right)\cdot (2 + x)} = \sqrt{x^2 + 5\cdot x + 6} |
31,891 | |w + z|^2 = (w + z) \left(\bar{w} + \bar{z}\right) = |w|^2 + |z|^2 + w\bar{z} + z\bar{w} |
421 | \frac{(-2)\cdot 1/x}{-e^{1/x}\cdot \frac{1}{x \cdot x}} = \dfrac{\left(-2\right)\cdot x}{(-1)\cdot e^{\frac{1}{x}}} = 2\cdot x\cdot e^{-1/x} |
-1,665 | \pi/6 + \frac{17}{12}*\pi = \frac{19}{12}*\pi |
-25,064 | 2/8\cdot 2/7 = 4/56 = \frac{1}{14} |
1,121 | 36 \times \left(-1\right) + t^3 - 10 \times t^2 + 33 \times t = \left(3 \times (-1) + t\right) \times \left(3 \times (-1) + t\right) \times \left(4 \times (-1) + t\right) |
22,592 | \sum_{l=1}^\infty \frac{1}{l^3}\cdot l = \sum_{l=1}^\infty \frac{1}{l^2} |
22,444 | s^2 + s + 1 = \frac{1}{(-1) + s}*(s^3 + (-1)) |
17,197 | \alpha^2/(\bar{\alpha}\cdot \alpha) = \frac{\alpha}{\bar{\alpha}} |
-6,528 | \frac{3}{2\cdot (7 + c)} = \tfrac{3}{2\cdot c + 14} |
-4,490 | \frac{1}{z \times z + 2 \times z + 3 \times (-1)} \times (17 \times (-1) + z) = \dfrac{5}{z + 3} - \frac{1}{z + (-1)} \times 4 |
-18,306 | \frac{y \cdot (5 + y)}{\left(y + 6(-1)\right) (y + 5)} = \frac{1}{30 (-1) + y^2 - y}(y \cdot y + y \cdot 5) |
-606 | e^{4 \pi i/3*8} = \left(e^{4 \pi i/3}\right)^8 |
48,531 | 2 \cdot 2 \cdot 2 + 3^3 = 8 + 27 = 35 |
1,992 | (a + 1)^2 = \left((-1) + a\right)^2 + a\cdot 4 |
11,509 | \sin{z^3} \cdot y' + \cos{z^3} \cdot y \cdot z^2 \cdot 3 = \sin{y^3} + 3 \cdot z \cdot y^2 \cdot \cos{y^3} \cdot y' |
8,532 | 1 + 3*n * n - 3*n = -\left((-1) + n\right)^2 * ((-1) + n) + n^3 |
16,958 | {2 \choose 2} = \frac{1}{2! \times 0!} \times 2! = 1 |
38,680 | 27 = 3^2 3 |
8,866 | 90 = 120*\frac14*3 |
-17,232 | -\dfrac{56}{9} = -\dfrac{1}{9} \cdot 56 |
-28,887 | x/6 = x - \tfrac{x}{2} - \dfrac{x}{3} |
22,602 | -f^4 + g^4 = (g - f) \cdot (f^3 + g^3 + f \cdot g^2 + f \cdot f \cdot g) |
8,948 | g \times g = g \times g |
-401 | \pi \cdot 2/3 = \pi \cdot 20/3 - \pi \cdot 6 |
41,111 | \dfrac{1}{1/2016 + 1}*2017 = 2016 |
-19,713 | 15/8 = 3 \cdot 5/(8) |
-7,356 | 1/\left(4*4\right) = 1/16 |
-29,427 | 12 \cdot 3/5 = \frac{1}{5} \cdot 36 |
-15,276 | \dfrac{1}{a^8 \cdot \frac{1}{p^{10}}} \cdot a = \tfrac{1}{\left(\frac{a^4}{p^5}\right)^2 \cdot 1/a} |
23,383 | \frac{4}{52} = 3/51*4/52 + \frac{4}{51}*48/52 |
28,301 | 1 - 2 \sin^2(x/2) = \cos(x) |
-9,325 | 32*\left(-1\right) - k*36 = -2*2*3*3*k - 2*2*2*2*2 |
-20,316 | \frac77 \cdot \dfrac{q + 9}{7 - q} = \frac{q \cdot 7 + 63}{-7 \cdot q + 49} |
19,068 | \sec\left(x\right) = -\dfrac{25}{7} \implies -7/25 = \cos(x) |
27,005 | (-w + z)*\left(-y + D\right) = z*D - w*D - z*y + y*w |
12,196 | \frac18 + \frac18 + \dfrac18*3 = 5/8 |
-20,549 | z*9/\left(z*9\right)*9/8 = 81 z/(72 z) |
29,915 | \sin(z \cdot 8 - z \cdot 5) = \sin{3 \cdot z} |
6,387 | -b^2 + c^2 = (b + c)*(-b + c) |
105 | (B + A)/G = A/G + B/G |
14,382 | 2\cdot 5!\cdot 5!/10 = \dfrac{5!}{5}\cdot 5! = 4!\cdot 5! |
14,279 | \arccos(\cos{0}) = \arccos(\cos{\pi*2}) |
-521 | (e^{\frac{5}{4} \cdot \pi \cdot i})^3 = e^{\dfrac{1}{4} \cdot 5 \cdot \pi \cdot i \cdot 3} |
11,788 | \sqrt{2} + \left(-1\right) = (1 + \sqrt{2} + (-1) + 3 - \sqrt{2} \cdot 2 + 5 \cdot \sqrt{2} + 7 \cdot \left(-1\right))/4 |
8,886 | n^2 + n = (n + 1)^2 - 1 + n |
-4,363 | \frac{1}{a^3}a^4*56/48 = \frac{56 a^4}{48 a^3} |
9,536 | 0 = 1 + z + z^2 + ... + z^{r + (-1)} = \frac{z^r + (-1)}{z + (-1)} \Rightarrow z^r = 1 |
30,016 | \frac{1}{2} \cdot (-\cos(x \cdot 2) + 1) = \sin^2(x) |
16,186 | \left(-B = -C + Z*C \Rightarrow C*(-x*f + Z) = -B\right) \Rightarrow \dfrac{1}{-x*f + Z}*((-1)*B) = C |
10,468 | det\left(G\right) = det\left(G_{m + (-1)}\right) = 1 \Rightarrow G_{m + (-1)} |
8,574 | (y + \omega) \cdot (y + \omega) - y^2 = y\cdot \omega\cdot 2 + \omega^2 |
4,327 | \sin\left(z\right) = \sin\left(-z + \pi\right) |
31,022 | 1 + 2 \cdot x = -x \cdot x + (x + 1)^2 |
3,378 | h_2\cdot h_1 = -h_1\cdot (-h_2) |
-23,125 | -\frac{1}{16}*5 = 5/8*(-\dfrac{1}{2}) |
21,618 | \dfrac{1}{z + \left(-1\right)} \cdot z = \dfrac{1}{z + (-1)} \cdot (z + (-1) + 1) = 1 + \frac{1}{z + (-1)} |
-11,505 | -8 + 0\times (-1) - 20\times i = -i\times 20 - 8 |
-23,598 | 2/5\times \frac27 = \frac{4}{35} |
-2,968 | \left(9 \cdot 7\right)^{1 / 2} + (25 \cdot 7)^{1 / 2} = 63^{\frac{1}{2}} + 175^{\tfrac{1}{2}} |
38,973 | \frac{\pi}{4} \cdot 3 = 2 \cdot \theta rightarrow \theta = 3 \cdot \pi/8 |
19,336 | x\times g = g\times n' \implies g\times x/g = n' |
-2,360 | (-9)^2 = (-9)\cdot \left(-9\right) = 81 |
14,626 | 15 + 3^{2k} = 16 + 9^k - 1^k |
-11,467 | -20 + 12*i = 0 + 20*(-1) + 12*i |
-3,204 | 2^{1 / 2}\cdot 5 + 3\cdot 2^{1 / 2} = 2^{1 / 2}\cdot 25^{\dfrac{1}{2}} + 2^{1 / 2}\cdot 9^{\tfrac{1}{2}} |
801 | 3 = x^2 + 2 \times x + z^2 \implies z^2 + (x + 1) \times (x + 1) = 4 |
-9,832 | -2/25 = -\frac{1}{50}*4 |
16,296 | 2^{k - x + 1} \cdot 4^{(-1) + x} = 2^{\left(-1\right) + k + x} |
11,832 | (x^2 - 4 \cdot x + 13) \cdot (1 + x) \cdot (x + 2) = x^4 - x^3 + 3 \cdot x^2 + x \cdot 31 + 26 |
13,028 | 0 = t^2 - 2\cdot x\cdot t + 1 \Rightarrow t = x \pm \sqrt{x^2 + \left(-1\right)} |
1,159 | 2^x \cdot 2^x + 2^x \cdot 2^x = 2 \cdot 2^{2 \cdot x} = 2^{2 \cdot x + 1} |
15,582 | 1/16 = \frac14 - \frac{3}{16} |
9,321 | 4^c = (2 \cdot 2)^c = 2^{2\cdot c} |
21,578 | (1 + \sin\left(E\right)) (1 + \sin\left(E\right)) + \cos^2\left(E\right) = 1 + 2 \sin\left(E\right) + \sin^2(E) + \cos^2(E) = 2 + 2 \sin\left(E\right) |
-26,465 | 64 - y \cdot 16 + y \cdot y = y^2 + 8^2 - 2 \cdot 8 \cdot y |
-23,351 | \dfrac{1}{49}18 = 3/7*6/7 |
37,383 | P\left(m\right) = X^m*B = B*X^m |
26,338 | 0 - 4 = 0 + 4 \cdot (-1) |
11,175 | \frac{z + 3\cdot (-1)}{4\cdot (-1) + z} = x \Rightarrow z = \dfrac{4\cdot x + 3\cdot \left(-1\right)}{x + \left(-1\right)} |
53,340 | e^\phi = e^\phi |
-4,439 | (z + 1)\cdot (z + (-1)) = z^2 + \left(-1\right) |
36,268 | \dfrac{1}{\sqrt{1 + m^2}} \cdot m = \frac{1}{\sqrt{z^2 + 1}} \cdot z \Rightarrow \sqrt{1 + z^2} \cdot m = \sqrt{m^2 + 1} \cdot z |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.