id
int64
-30,985
55.9k
text
stringlengths
5
437k
6,226
256 \cdot 256^2 - 255^3 = 195841 = 22^3 + 57^3 = 9^3 + 58^3
-2,970
7\cdot 11^{\dfrac{1}{2}} = 11^{1 / 2}\cdot (4 + 2(-1) + 5)
-24,981
4\cdot 2.5={10}
15,609
\frac{1}{10^2}*(10 - 2*3)^2 = \frac{1}{10^2}*4^2 = 0.16
-15,989
-\frac{1}{10}*28 = -6*\frac{8}{10} + 10*2/10
5,998
|25\cdot (-1) + x^2| = |(x + 5)\cdot (x + 5\cdot (-1))|
-25,799
\frac{7}{10 \cdot 2} = \frac{1}{20} \cdot 7
1,532
\frac{\pi^2}{6} = 1 + 1/4 + 1/9 + \dots
30,702
f_1 - b - f_2 = -b + f_1 + f_2
25,919
n^7 - n = n^7 - n^5 + n^5 - n * n^2 + n^3 - n = (n^4 + n^2 + 1)*(n^3 - n)
28,190
\lambda^2 - a^2 = (-a + \lambda)\cdot (a + \lambda)
29,998
\left(1 - 2x + 3x * x - 4x^3 + \ldots\right)^{\frac12} = \frac{1}{1 + x} = 1 - x + x^2 - x^3 + \ldots
2,209
1 + x^2 - 2x = ((-1) + x)^2
-9,501
-2*2*2*3 y + 2*3*5 = -y*24 + 30
26,234
(1 + n)*(\left(-1\right) + n) + 1 = n^2
28,768
f \cdot x + g_1 \cdot g_2 = f \cdot x + g_1 \cdot g_2
-2,188
7/12 - \dfrac{1}{12}3 = \frac{1}{12}4
5,804
\sqrt{\left(x + 3\right)\cdot (2 + x)} = \sqrt{x^2 + 5\cdot x + 6}
31,891
|w + z|^2 = (w + z) \left(\bar{w} + \bar{z}\right) = |w|^2 + |z|^2 + w\bar{z} + z\bar{w}
421
\frac{(-2)\cdot 1/x}{-e^{1/x}\cdot \frac{1}{x \cdot x}} = \dfrac{\left(-2\right)\cdot x}{(-1)\cdot e^{\frac{1}{x}}} = 2\cdot x\cdot e^{-1/x}
-1,665
\pi/6 + \frac{17}{12}*\pi = \frac{19}{12}*\pi
-25,064
2/8\cdot 2/7 = 4/56 = \frac{1}{14}
1,121
36 \times \left(-1\right) + t^3 - 10 \times t^2 + 33 \times t = \left(3 \times (-1) + t\right) \times \left(3 \times (-1) + t\right) \times \left(4 \times (-1) + t\right)
22,592
\sum_{l=1}^\infty \frac{1}{l^3}\cdot l = \sum_{l=1}^\infty \frac{1}{l^2}
22,444
s^2 + s + 1 = \frac{1}{(-1) + s}*(s^3 + (-1))
17,197
\alpha^2/(\bar{\alpha}\cdot \alpha) = \frac{\alpha}{\bar{\alpha}}
-6,528
\frac{3}{2\cdot (7 + c)} = \tfrac{3}{2\cdot c + 14}
-4,490
\frac{1}{z \times z + 2 \times z + 3 \times (-1)} \times (17 \times (-1) + z) = \dfrac{5}{z + 3} - \frac{1}{z + (-1)} \times 4
-18,306
\frac{y \cdot (5 + y)}{\left(y + 6(-1)\right) (y + 5)} = \frac{1}{30 (-1) + y^2 - y}(y \cdot y + y \cdot 5)
-606
e^{4 \pi i/3*8} = \left(e^{4 \pi i/3}\right)^8
48,531
2 \cdot 2 \cdot 2 + 3^3 = 8 + 27 = 35
1,992
(a + 1)^2 = \left((-1) + a\right)^2 + a\cdot 4
11,509
\sin{z^3} \cdot y' + \cos{z^3} \cdot y \cdot z^2 \cdot 3 = \sin{y^3} + 3 \cdot z \cdot y^2 \cdot \cos{y^3} \cdot y'
8,532
1 + 3*n * n - 3*n = -\left((-1) + n\right)^2 * ((-1) + n) + n^3
16,958
{2 \choose 2} = \frac{1}{2! \times 0!} \times 2! = 1
38,680
27 = 3^2 3
8,866
90 = 120*\frac14*3
-17,232
-\dfrac{56}{9} = -\dfrac{1}{9} \cdot 56
-28,887
x/6 = x - \tfrac{x}{2} - \dfrac{x}{3}
22,602
-f^4 + g^4 = (g - f) \cdot (f^3 + g^3 + f \cdot g^2 + f \cdot f \cdot g)
8,948
g \times g = g \times g
-401
\pi \cdot 2/3 = \pi \cdot 20/3 - \pi \cdot 6
41,111
\dfrac{1}{1/2016 + 1}*2017 = 2016
-19,713
15/8 = 3 \cdot 5/(8)
-7,356
1/\left(4*4\right) = 1/16
-29,427
12 \cdot 3/5 = \frac{1}{5} \cdot 36
-15,276
\dfrac{1}{a^8 \cdot \frac{1}{p^{10}}} \cdot a = \tfrac{1}{\left(\frac{a^4}{p^5}\right)^2 \cdot 1/a}
23,383
\frac{4}{52} = 3/51*4/52 + \frac{4}{51}*48/52
28,301
1 - 2 \sin^2(x/2) = \cos(x)
-9,325
32*\left(-1\right) - k*36 = -2*2*3*3*k - 2*2*2*2*2
-20,316
\frac77 \cdot \dfrac{q + 9}{7 - q} = \frac{q \cdot 7 + 63}{-7 \cdot q + 49}
19,068
\sec\left(x\right) = -\dfrac{25}{7} \implies -7/25 = \cos(x)
27,005
(-w + z)*\left(-y + D\right) = z*D - w*D - z*y + y*w
12,196
\frac18 + \frac18 + \dfrac18*3 = 5/8
-20,549
z*9/\left(z*9\right)*9/8 = 81 z/(72 z)
29,915
\sin(z \cdot 8 - z \cdot 5) = \sin{3 \cdot z}
6,387
-b^2 + c^2 = (b + c)*(-b + c)
105
(B + A)/G = A/G + B/G
14,382
2\cdot 5!\cdot 5!/10 = \dfrac{5!}{5}\cdot 5! = 4!\cdot 5!
14,279
\arccos(\cos{0}) = \arccos(\cos{\pi*2})
-521
(e^{\frac{5}{4} \cdot \pi \cdot i})^3 = e^{\dfrac{1}{4} \cdot 5 \cdot \pi \cdot i \cdot 3}
11,788
\sqrt{2} + \left(-1\right) = (1 + \sqrt{2} + (-1) + 3 - \sqrt{2} \cdot 2 + 5 \cdot \sqrt{2} + 7 \cdot \left(-1\right))/4
8,886
n^2 + n = (n + 1)^2 - 1 + n
-4,363
\frac{1}{a^3}a^4*56/48 = \frac{56 a^4}{48 a^3}
9,536
0 = 1 + z + z^2 + ... + z^{r + (-1)} = \frac{z^r + (-1)}{z + (-1)} \Rightarrow z^r = 1
30,016
\frac{1}{2} \cdot (-\cos(x \cdot 2) + 1) = \sin^2(x)
16,186
\left(-B = -C + Z*C \Rightarrow C*(-x*f + Z) = -B\right) \Rightarrow \dfrac{1}{-x*f + Z}*((-1)*B) = C
10,468
det\left(G\right) = det\left(G_{m + (-1)}\right) = 1 \Rightarrow G_{m + (-1)}
8,574
(y + \omega) \cdot (y + \omega) - y^2 = y\cdot \omega\cdot 2 + \omega^2
4,327
\sin\left(z\right) = \sin\left(-z + \pi\right)
31,022
1 + 2 \cdot x = -x \cdot x + (x + 1)^2
3,378
h_2\cdot h_1 = -h_1\cdot (-h_2)
-23,125
-\frac{1}{16}*5 = 5/8*(-\dfrac{1}{2})
21,618
\dfrac{1}{z + \left(-1\right)} \cdot z = \dfrac{1}{z + (-1)} \cdot (z + (-1) + 1) = 1 + \frac{1}{z + (-1)}
-11,505
-8 + 0\times (-1) - 20\times i = -i\times 20 - 8
-23,598
2/5\times \frac27 = \frac{4}{35}
-2,968
\left(9 \cdot 7\right)^{1 / 2} + (25 \cdot 7)^{1 / 2} = 63^{\frac{1}{2}} + 175^{\tfrac{1}{2}}
38,973
\frac{\pi}{4} \cdot 3 = 2 \cdot \theta rightarrow \theta = 3 \cdot \pi/8
19,336
x\times g = g\times n' \implies g\times x/g = n'
-2,360
(-9)^2 = (-9)\cdot \left(-9\right) = 81
14,626
15 + 3^{2k} = 16 + 9^k - 1^k
-11,467
-20 + 12*i = 0 + 20*(-1) + 12*i
-3,204
2^{1 / 2}\cdot 5 + 3\cdot 2^{1 / 2} = 2^{1 / 2}\cdot 25^{\dfrac{1}{2}} + 2^{1 / 2}\cdot 9^{\tfrac{1}{2}}
801
3 = x^2 + 2 \times x + z^2 \implies z^2 + (x + 1) \times (x + 1) = 4
-9,832
-2/25 = -\frac{1}{50}*4
16,296
2^{k - x + 1} \cdot 4^{(-1) + x} = 2^{\left(-1\right) + k + x}
11,832
(x^2 - 4 \cdot x + 13) \cdot (1 + x) \cdot (x + 2) = x^4 - x^3 + 3 \cdot x^2 + x \cdot 31 + 26
13,028
0 = t^2 - 2\cdot x\cdot t + 1 \Rightarrow t = x \pm \sqrt{x^2 + \left(-1\right)}
1,159
2^x \cdot 2^x + 2^x \cdot 2^x = 2 \cdot 2^{2 \cdot x} = 2^{2 \cdot x + 1}
15,582
1/16 = \frac14 - \frac{3}{16}
9,321
4^c = (2 \cdot 2)^c = 2^{2\cdot c}
21,578
(1 + \sin\left(E\right)) (1 + \sin\left(E\right)) + \cos^2\left(E\right) = 1 + 2 \sin\left(E\right) + \sin^2(E) + \cos^2(E) = 2 + 2 \sin\left(E\right)
-26,465
64 - y \cdot 16 + y \cdot y = y^2 + 8^2 - 2 \cdot 8 \cdot y
-23,351
\dfrac{1}{49}18 = 3/7*6/7
37,383
P\left(m\right) = X^m*B = B*X^m
26,338
0 - 4 = 0 + 4 \cdot (-1)
11,175
\frac{z + 3\cdot (-1)}{4\cdot (-1) + z} = x \Rightarrow z = \dfrac{4\cdot x + 3\cdot \left(-1\right)}{x + \left(-1\right)}
53,340
e^\phi = e^\phi
-4,439
(z + 1)\cdot (z + (-1)) = z^2 + \left(-1\right)
36,268
\dfrac{1}{\sqrt{1 + m^2}} \cdot m = \frac{1}{\sqrt{z^2 + 1}} \cdot z \Rightarrow \sqrt{1 + z^2} \cdot m = \sqrt{m^2 + 1} \cdot z