id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
-6,428 | \frac{5}{4\cdot y + 20\cdot (-1)} = \frac{5}{(y + 5\cdot \left(-1\right))\cdot 4} |
13,530 | \frac12 \cdot (-k + n) + k = \frac12 \cdot (k + n) |
1,303 | \dfrac{2\tan{y}}{1 + \tan^2{y}} = \sin{2y} |
-5,649 | \frac{2}{2*(p + 10*(-1))} = \frac{1}{20*(-1) + p*2}*2 |
7,135 | p/3 < 1 \implies 3 \gt p |
21,058 | \frac{f}{4} = f \cdot f/(f\cdot 4) |
-3,070 | (1 + 5 + 2) \cdot 3^{\frac{1}{2}} = 8 \cdot 3^{\frac{1}{2}} |
1,218 | \left(183 + 84\cdot (-1)\right)/3 = 33 |
16,697 | 40 + 2*10^2 - 16*10 = 80 |
19,340 | \frac{720}{3 \cdot 2} \cdot 1 = {10 \choose 3} |
7,901 | C_2 C_1 = C_1 C_2 \Rightarrow e^{C_2} e^{C_1} = e^{C_2 + C_1} |
4,901 | 5 = \frac{x + H + z}{z \cdot x \cdot H}\Longrightarrow H \cdot x \cdot z = 1 |
17,835 | 1 + k \cdot z + z = 1 + (k + 1) \cdot z \leq (1 + z)^k + z |
-1,605 | -\frac{\pi}{2} + \pi \cdot 7/6 = 2/3 \cdot \pi |
-11,627 | i\cdot 21 + 3 = 21 i - 9 + 12 |
8,008 | 1 + \frac{4}{(-1) + i} = \frac{i + 3}{i + \left(-1\right)} |
-18,371 | \frac{1}{49 + s^2 + s \times 14} \times (s \times s + 7 \times s) = \frac{s \times (s + 7)}{(s + 7) \times (s + 7)} |
-860 | 0 + \frac{1}{10} 4 + 7/100 + \frac{5}{1000} + 2/10000 = \dfrac{4752}{10000} |
-731 | (e^{\dfrac{1}{12} 7 \pi i})^7 = e^{\pi i*7/12*7} |
23,937 | -\dfrac{20}{36} + 1 - \frac{1}{36} = \frac{15}{36} |
14,841 | \frac{1}{6}*(3^3 - 3*(2 * 2 * 2 + 2*(-1)) + 3*\left(-1\right)) = (27 + 18*(-1) + 3*(-1))/6 = 1 |
27,495 | 1 + 2^2 + 3^2 + \ldots*n^2 = n/6*(1 + n)*\left(1 + 2*n\right) |
-17,424 | 84 = 39 + 45 |
10,433 | \cos{\dfrac{2}{5} \cdot \pi} + \cos{4 \cdot \pi/5} = -1/2 |
31,119 | \mathbb{E}(Y) = \mathbb{E}(s_H\cdot Y_1 + s_B\cdot Y_2) = s_H\cdot \mathbb{E}(Y_1) + s_B\cdot \mathbb{E}(Y_2) |
909 | \left(a + f\right)*(a - f) = a^2 - f^2 |
22,883 | \tfrac{2}{15} = 2/15 |
31,002 | \frac{(x + (-1))!}{\left(-x + x + (-1)\right)! \cdot x!} = \binom{x + (-1)}{x} |
29,884 | i\cdot b + a = b\cdot i + a |
20,466 | 1/\left(1/(\dfrac{1}{1/25})\right) = 5^{-2*\left(-(-1)*(-1)\right)} = 5^2 = 25 |
15,574 | b \cdot b + a \cdot a + 2\cdot a\cdot b = \left(a + b\right)^2 |
17,460 | \frac{1}{h*d} = \frac{1}{h*d} |
28,990 | \frac{l!}{(l - D)! D!} = \binom{l}{D} |
23,937 | 1 - \tfrac{1}{36} - 20/36 = 15/36 |
1,535 | \frac{1}{u \cdot u} + u^2 = (u + \tfrac{1}{u})^2 + 2 \cdot (-1) |
3,226 | \log_W(g) = \log_e(g)/(\log_e(W)) |
-17,627 | 9(-1) + 32 = 23 |
-4,089 | \frac{1}{y^5} \cdot y^3 \cdot 44/12 = \frac{44}{y^5 \cdot 12} \cdot y^3 |
36,432 | 7\cdot 17\cdot 23 = 2737 |
-19,390 | \frac{3}{6\cdot \frac{1}{5}}\frac{1}{7} = 5/6\cdot \frac37 |
41,564 | 0.76 \cdot 0.76 + 0.65^2 = 1.0001 |
38,374 | 162 (-1) + 48 + 24 + 72 (-1) + 162 = 0 |
25,116 | (f + h)^2 = h \times h + f^2 + f \times h \times 2 |
193 | 1 + h = \left(1 + \frac{1}{m}\right)^{\frac13} \implies (h + 1)^3 = 1 + 1/m |
-26,391 | x^n*x^m = x^{m + n} |
-28,987 | 4*91.25 = 365 |
45,896 | 10!/5! = 10*9*8*7*6 = 30240 |
30,221 | C_2 \cup C_1 \backslash C_2 = C_1 \Rightarrow \{C_2, C_1\} |
-29,871 | d/dz (5 \cdot z^4) = 5 \cdot \frac{d}{dz} z^4 = 5 \cdot 4 \cdot z \cdot z \cdot z = 20 \cdot z^3 |
17,965 | (-160)^2 - 1 \times 22 \times 4 = 25512 |
-7,233 | 4/55 = 2/11 \cdot \frac{4}{10} |
1,857 | 37.5 = \frac{1}{100}\cdot 15\cdot 250 |
-3,426 | \sqrt{3}*3 = (4 + (-1))*\sqrt{3} |
35,311 | \frac{1}{E \cdot b} = \frac{1}{b \cdot E} \neq \frac{1}{E \cdot b} |
253 | \sin{\frac{1}{12}} = \sin(-1/4 + \frac13) |
7,734 | (-\sqrt{3}\cdot 2 - 1)\cdot \left(1 - \sqrt{3}\cdot 2\right) = 11 |
-17,037 | 2 = 2\cdot (-3\cdot s) + 2\cdot (-1) = -6\cdot s - 2 = -6\cdot s + 2\cdot (-1) |
-5,143 | \dfrac{0.54}{1000} = 0.54/1000 |
31,405 | -k + n = -(k + (-1)) + n + (-1) |
20,336 | (f + e) v_1 + v_2 (f + e) = (v_1 + v_2) (e + f) |
25,940 | (-x + I)\cdot (I + x + x^2 + \dots + x^k) = -x^{1 + k} + I |
26,023 | 6 = \frac{1}{2} \cdot (4 \cdot \left(-1\right) + 16) |
-2,431 | 5^{1/2}*2 + 3*5^{1/2} = 5^{1/2}*9^{1/2} + 4^{1/2}*5^{1/2} |
5,117 | h*1/x/(h*1/x) = \dfrac{x}{h} \frac{h}{x} |
-3,112 | \sqrt{13}*4 - \sqrt{13} = \sqrt{13}*\sqrt{16} - \sqrt{13} |
46,795 | \frac{\partial}{\partial t} e^{-\int_0^t r \cdot s\,ds} = (e^{-\int_0^t r \cdot s\,ds}) \cdot \frac{\partial}{\partial t} (-\int\limits_0^t r \cdot s\,ds) = (e^{-\int_0^t r \cdot s\,ds}) \cdot \left(-r \cdot t\right) = -r \cdot t \cdot e^{-\int\limits_0^t r \cdot s\,ds} |
-27,372 | 230 +{148}= 378 |
746 | (-\frac12)^{\frac12} = \sqrt{-1/2} |
-1,790 | -\pi \cdot \dfrac53 + 4/3 \cdot \pi = -\pi/3 |
22,616 | 0 = x\times 2 \Rightarrow 0 = x |
19,229 | (519 + 89 \times \sqrt{34}) \times (-89 \times \sqrt{34} + 519) = 47 |
-7,817 | \frac{i\cdot 21 + 1}{2\cdot i - 3} = \tfrac{i\cdot 21 + 1}{-3 + i\cdot 2}\cdot \dfrac{-3 - 2\cdot i}{-i\cdot 2 - 3} |
-2,652 | -5^{\frac{1}{2}} + 125^{\frac{1}{2}} + 20^{1 / 2} = -5^{1 / 2} + (25*5)^{1 / 2} + (4*5)^{\dfrac{1}{2}} |
33,354 | 87091 + 4 (-1) = 87087 |
2,858 | 0 = \frac{1}{c} + \frac{1}{h} + \frac{1}{b}\Longrightarrow 0 = (hc + hb + bc)/(hcb) |
631 | \sqrt{(-3) \times (-3) + (-1)^2 + 2^2} = \sqrt{14} |
24,578 | \frac{1}{x^{1/2}*x^{\frac12}} = 1/x |
-492 | (e^{7*\pi*i/4})^6 = e^{6*\frac{i*\pi*7}{4}} |
9,476 | 2^{\frac18\cdot (n + 1)} = 2^{1/8}\cdot 2^{n/8} \gt 2^{1/8}\cdot n |
28,223 | \frac{1 + x}{((-1) + x)^2} = \dfrac{x + (-1) + 2}{((-1) + x) \cdot ((-1) + x)} |
21,662 | 1 = c\cdot h/\left(c\cdot h\right) = h\cdot \frac{\dfrac1c\cdot c}{h} |
8,990 | A_1 = \left\{\dots, 256, 129130\right\} \implies 128 = |A_1| |
23,938 | 1 = (-1)\cdot (-1) = (y + \frac{1}{y})\cdot (y^2 + \dfrac{1}{y^2}) = y^3 + y + 1/y + \dfrac{1}{y \cdot y^2} = y^3 + (-1) + \frac{1}{y^3} |
-7,658 | \dfrac{22 \cdot i - 7}{2 + i \cdot 3} = \dfrac{1}{2 + 3 \cdot i} \cdot (-7 + i \cdot 22) \cdot \frac{-3 \cdot i + 2}{2 - 3 \cdot i} |
-9,145 | 2 \cdot 3 \cdot 7 \cdot q \cdot q = 42 \cdot q^2 |
5,355 | -\frac5w + 1 = \frac1w \cdot (5 \cdot (-1) + w) |
13,197 | e^{(C_1 + C_2) \cdot p} = e^{C_1 \cdot p} \cdot e^{C_2 \cdot p} = e^{C_2 \cdot p} \cdot e^{C_1 \cdot p} |
23,572 | qa + qx = (a + x) q |
183 | f_1 = \dfrac{1}{f_2 + z} \cdot (y + f_2) \Rightarrow y + f_2 = f_1 \cdot (z + f_2) = f_1 \cdot z + f_1 \cdot f_2 |
-22,835 | \frac{108}{120} = \tfrac{9 \cdot 12}{12 \cdot 10} |
1,021 | e^{x + y} = e^{x}\cdot e^{y} |
-26,542 | 100 - 9*z^2 = (10 - z*3)*(3*z + 10) |
9,907 | 1/4 = 1/7 + \frac{1}{21} + \frac{1}{28} + \frac{1}{42} |
-20,814 | \frac{7}{7} \times (-s \times 5 + (-1))/5 = \frac{1}{35} \times (7 \times (-1) - s \times 35) |
2,216 | \left(a + b\right) \times (a - b) = -b^2 + a \times a |
30,504 | -q + 3\cdot (2\cdot e - 3\cdot q) = -10\cdot q + 6\cdot e |
-1,101 | ((-9)\cdot 1/2)/(\frac{1}{7}\cdot 9) = \frac197 (-9/2) |
27,340 | k = k + (3 - k) \cdot 0 |
4,797 | \left(e^x + (-1)\right) \cdot \frac{1}{(-1) + e^x} \cdot x = x |
1,174 | \frac1611 \pi = -\frac{\pi}{6} + \pi*2 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.