id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
2,655 | (a + x)^4 - 4a^3 x - a^2 x^2*6 - ax^3*4 = a^4 + x^4 |
-4,080 | 32\cdot x \cdot x/(x\cdot 48) = \frac{32}{48}\cdot \frac1x\cdot x^2 |
47,049 | 30 \times 4 = 120 = 1 + 17 \times 7 |
9,048 | \left( 5, 9, 0\right) = ( 2, 1, -5) + ( x, y, z)\Longrightarrow ( 5, 9, 0) = ( 2 + x, y + 1, 5 \cdot (-1) + z) |
11,071 | (4^6)^{96} \cdot 4^2 = 4^{578} |
-3,821 | 2h^4 = 2h^4 |
4,976 | \left(10 + x\right)*x = x^2 + 10*x |
8,996 | 0 < \left(-1\right) + f rightarrow 1 < f |
20,163 | 0\times 0 - \frac{1}{2}\times 1/2 = -1/4 \lt 0 |
-25,237 | z \cdot 5/2 = \frac{\mathrm{d}}{\mathrm{d}z} \sqrt{z^5} |
21,380 | |\frac{x + \left(-1\right)}{x + 1} + (-1)| = |-\frac{2}{x + 1}| = \dfrac{2}{|x + 1|} |
-1,756 | \pi + \pi\cdot \frac{1}{12}\cdot 5 = \pi\cdot \frac{17}{12} |
25,048 | det\left(H \cdot Z\right) = det\left(H\right) \cdot det\left(Z\right) = det\left(Z\right) \cdot det\left(H\right) = det\left(Z \cdot H\right) |
10,662 | \dfrac{n}{\binom{2\cdot n}{2}} = \dfrac{1}{2\cdot n\cdot (2\cdot n + (-1))\cdot 1/2}\cdot n = \frac{1}{2\cdot n + \left(-1\right)} |
7,507 | 2/9 \cdot t_{2 \cdot (-1) + m} = \frac{1}{3} \cdot 2 \cdot \frac{1}{3} \cdot t_{2 \cdot (-1) + m} |
39,013 | \cos(π - x) = -\cos(x) |
29,566 | 128 = -16 \approx Y \Rightarrow -8 = Y |
-1,686 | 2\cdot \pi - \frac54\cdot \pi = \frac{3}{4}\cdot \pi |
-1,178 | 45/72 = \frac{5}{72 \cdot 1/9} \cdot 1 = \frac58 |
-10,740 | \frac{1}{k + 3}\cdot \left(k\cdot 2 + 9\cdot (-1)\right)\cdot \frac44 = \frac{8\cdot k + 36\cdot (-1)}{k\cdot 4 + 12} |
28,032 | |\lambda x| = |x| |\lambda| |
809 | z! = 10!*11*12 \dots z \gt 10!*11^{z + 10 \left(-1\right)} |
36,078 | \dotsm = 1 - 1 + 1 - 1 + 1 - 1 + \dotsm |
14,720 | w = \frac{z}{x} \Rightarrow z = w \cdot x |
26,141 | \cos^2 \theta= 1-\sin^2\theta |
26,596 | \left((-1) + z\right) \cdot \left(2 \cdot \left(-1\right) + z\right) = 2 + z^2 - z \cdot 3 |
46,730 | \int_1^x \frac{1}{1 + t^2}\,\mathrm{d}t = \int_{\frac1x}^1 \frac{\frac{1}{t^2}}{1 + (1/t)^2}\cdot 1\,\mathrm{d}t = \int\limits_{1/x}^1 \frac{1}{1 + t \cdot t}\,\mathrm{d}t |
18,555 | \mathbb{E}(X + Q) = \mathbb{E}(Q) + \mathbb{E}(X) |
31,154 | 4! \cdot 13 \cdot 11 \cdot 10 \cdot 36 \cdot 12 = 14826240 |
2,716 | A\cdot h = A\cdot h |
17,984 | \frac{1}{324}144 = 4/9 |
22,091 | 3\times 2 + 2^3 = 14 |
-1,964 | 19/12 \pi + \frac76 \pi = \dfrac{11}{4} \pi |
31,802 | \frac{1 + \sqrt{6}}{12} = \frac{1}{12} + \frac{\sqrt{6}}{12} |
-10,710 | 20 = -40\times y + 140 + 5\times (-1) = -40\times y + 135 |
5,422 | z\cdot (z + \left(-1\right)) = -z + z^2 |
28,252 | \cos(2(x + (-1))) = \cos(2x + 2(-1)) |
9,829 | \sin{y} = \cos{y} \implies \tan{y} = 1 |
356 | \frac{1}{5}\cdot 0 + 4\cdot 1/5/3 = 4/15 |
4,244 | \left|{AA^W}\right| = 0 = \left|{A^W A}\right| |
6,200 | (x^2 + 1)\cdot 0 + 5\cdot 3 + 12 (\left(-1\right) + x) = 3 + x\cdot 12 |
2,301 | (8k)^2/2=32k^2 |
-10,438 | \frac{\eta\cdot 5 + (-1)}{6\cdot (-1) + \eta\cdot 2}\cdot 3/3 = \frac{15\cdot \eta + 3\cdot (-1)}{6\cdot \eta + 18\cdot (-1)} |
22,038 | 1/(\sqrt{y}) = y^{-\frac{1}{2}} |
340 | \dfrac{1}{B + (-1)}*(B^9 + \left(-1\right)) = 1 + B + \dots + B^8 = \mathbb{P}(B) |
-30,918 | 12\times y + 15\times (-1) = y\times 12 + 15\times (-1) |
10,667 | {(-1) + m \choose p + (-1)} + {m + (-1) \choose p} = {m \choose p} |
25,230 | (-2 + 1)^2 + (0 + 1)^2 - 0 \cdot (-2 + 0 + 3) \cdot 2 = 2 |
9,524 | -\frac{1}{y + (-1)} = \frac{1}{1 - y} |
2,869 | |A| = B \Rightarrow A^2 = |A| |A| = BB = B \cdot B |
7,041 | 1 - \frac{6!\cdot 2!}{7!}\cdot 1 = 5/7 |
-13,825 | \frac{5}{9 + 8 \cdot \left(-1\right)} = \frac{1}{1} \cdot 5 = 5/1 = 5 |
-3,198 | \sqrt{6} \cdot \sqrt{4} + \sqrt{25} \cdot \sqrt{6} = 2 \cdot \sqrt{6} + \sqrt{6} \cdot 5 |
-2,269 | \dfrac{9}{12} = -1/12 + 10/12 |
4,390 | \left(m + (-1)\right) ((-1) + m)! = -(m + (-1))! + m! |
19,821 | \left(\frac{4}{120} + \tfrac{1}{4} + 1/6 + \tfrac12\right) \times 8! = 38304 |
-22,198 | h \cdot h - 4 \cdot h + 3 = (h + 3 \cdot (-1)) \cdot ((-1) + h) |
-16,941 | -3 = -3*\left(-5*n\right) - -18 = 15*n + 18 = 15*n + 18 |
30,495 | \frac{\mathrm{d}}{\mathrm{d}x} x \cdot x = 2\cdot x |
27,138 | \frac{1}{5} = \frac{1}{30} + \frac{1}{24} + 1/8 |
21,761 | (h^2 + b \cdot b) \cdot (c^2 + d^2) = (h \cdot c + b \cdot d) \cdot (h \cdot c + b \cdot d) + \left(h \cdot d - b \cdot c\right)^2 = \left(h \cdot c - b \cdot d\right)^2 + (h \cdot d + b \cdot c)^2 |
-10,530 | -\frac{40 \cdot (-1) + y \cdot 4}{20 + 4 \cdot y} = -\frac{1}{5 + y} \cdot (y + 10 \cdot (-1)) \cdot 4/4 |
10,420 | \left(5^n + \left(-1\right)\right) \left(1 + 5^n\right) = (-1) + 5^{n\cdot 2} |
11,322 | m + 2 \cdot \binom{m}{2} = m^2 |
-18,591 | 5 e + 9 (-1) = 10*(5 e + 5 \left(-1\right)) = 50 e + 50 (-1) |
12,255 | 7 = |11 + 4\times (-1)| |
15,956 | \sin(2 \cdot y) = \tfrac{2 \cdot \tan(y)}{\tan^2(y) + 1} \cdot 1 |
12,269 | d \cdot n_i + (1 + n_i) \cdot b = L_i rightarrow \frac{L_i - b}{d + b} = n_i |
1,509 | (z*\left(-1\right))/\left(-2\right) = (z*(-1))/(\left(-1\right)*2) |
383 | 0 = E[A^5] \Rightarrow E[A^3] = 0 |
-1,895 | 0 + \pi\cdot \frac{7}{12} = \frac{7}{12}\cdot \pi |
30,022 | \frac{\frac{1}{2}}{x + \left(-1\right)} + \frac{1/2\cdot \left(-1\right)}{x + 1} = \frac{1}{(1 + x)\cdot (x + (-1))} |
-20,828 | 3/7*\frac{8*\left(-1\right) - q*2}{-q*2 + 8*(-1)} = \dfrac{1}{56*(-1) - 14*q}*(24*(-1) - 6*q) |
29,673 | 2\cdot k + (2\cdot k + 1)^3 + 1 = 8\cdot k^3 + 12\cdot k^2 + 8\cdot k + 1 = 4\cdot (2\cdot k^3 + 3\cdot k^2 + 2\cdot k + 1) |
9,588 | H \cap x = H rightarrow \{H, x\} |
12,188 | n*2 - k*2 \geq 1 + n rightarrow k \leq \left((-1) + n\right)/2 |
-17,388 | \dfrac{113.6}{100} = 1.136 |
24,598 | z^2 + z + 1 - 1 + 2\cdot z = z^2 - z |
14,797 | z^2 - 2\cdot z + 5 = z^2 - 2\cdot z + 1 + 4 = \left(z + (-1)\right)^2 + 4 |
27,980 | 2^{n + 1} + 2^{n + 1} = 2*2^{1 + n} |
698 | \dfrac{1}{3} \cdot 0 + 2/3 \cdot (1/2 + 1/2) = 2/3 |
-8,305 | (-8)\cdot (-6) = 48 |
25,015 | -1 = \left(1 + 3(-1) + 1\right)^{111} |
2,596 | (-3)^{\dfrac{1}{2}} \cdot (-2)^{\dfrac{1}{2}} = -(3 \cdot 2)^{\frac{1}{2}} = -6^{1 / 2} = -2.449 |
29,260 | \binom{N + (-1)}{m + (-1)} = \binom{N - m + m + (-1)}{(-1) + m} |
14,079 | (a^2 + b^2) \cdot (a^2 + b^2) = \left(2 \cdot a \cdot b\right)^2 + (-b^2 + a^2)^2 |
-11,483 | i\cdot 30 + 20 = 30\cdot i - 5 + 25 |
323 | (i\cdot 16)^{-1} = (4i)^{-1} - 3/(i\cdot 16) |
10,289 | i\times \sin\left(\frac12\times π\right) + \cos\left(\frac{π}{2}\right) = i |
6,131 | \cos{z} = \cos\left(\tfrac{1}{4}\cdot \pi + z - \frac{\pi}{4}\right) |
5,387 | \frac{39}{212} + 2 = 463/212 |
38,634 | U \times \pi/\pi = U |
8,025 | D = D \cap X \implies \{D, X\} |
870 | 5^4 = \left(3^2 + 4 \times 4\right) \times 5^2 |
32,371 | b \cdot a + a \cdot c + c \cdot b = ((a + b + c)^2 - a^2 + b \cdot b + c^2)/2 |
17,463 | z^{7/3} = z^{4/3 + \dfrac133} = z^{4/3} z^{3/3} = z^{4/3} z |
-10,394 | -\frac{z + 8}{4 \cdot z + 2} \cdot \frac14 \cdot 4 = -\dfrac{1}{z \cdot 16 + 8} \cdot (32 + 4 \cdot z) |
14,966 | \sin{\beta} \cos{\beta}*2 = \sin{2 \beta} |
21,052 | 30/5 + \left(-1\right) = 6 + (-1) = 5 |
-11,953 | \frac{2}{5} = s/\left(20*\pi\right)*20*\pi = s |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.