id
int64
-30,985
55.9k
text
stringlengths
5
437k
-25,802
\frac{5}{21} = \dfrac{5 / 3}{7} \cdot 1
-28,689
z^2 - 6*z + 13 = z^2 - 6*z + 9 + 4 = \left(z + 3*(-1)\right) * \left(z + 3*(-1)\right) + 4 = (z*(-3))^2 + 2^2
16,674
\cos(y + z) = -\sin{y} \cdot \sin{z} + \cos{y} \cdot \cos{z}
13,417
xz = 1 + x + (-1) + z + (-1) + (\left(-1\right) + x) ((-1) + z)
38,238
\alpha\cdot \beta = \alpha\cdot \beta
9,424
\dfrac{m}{m^u} = m^{-(u + (-1))}
-5,278
45/100 = \frac{45.0}{100}
1,641
-\frac12 \cdot 2 \cdot \pi \cdot i = -i \cdot \pi
12,466
-\frac{1}{x_n + 1} + 1 = \dfrac{1}{x_n + 1} \cdot x_n
7,397
\frac{1}{4*3}*48 = 4
21,554
1 + ... + q^{x + 1} = \frac{1}{1 - q} \cdot \left(q^{1 + x} \cdot \left(-q + 1\right) + 1 - q^{1 + x}\right)
3,766
z*2 = 2 + 2*\left(z + \left(-1\right)\right)
21,264
|\frac{1}{1 + x x} - \dfrac{1}{1 + u u}| = |\frac{1}{\left(1 + x x\right) (1 + u^2)} (u^2 - x^2)|
-20,790
\frac{5\cdot k + 3}{k\cdot 5 + 3}\cdot (-\tfrac{2}{1}) = \dfrac{1}{k\cdot 5 + 3}\cdot (-10\cdot k + 6\cdot (-1))
17,482
-(h^2 + d * d)^2 + (h^2 - d^2)^2 = -h^4 - 2*h^2*d * d - d^4 + h^4 - 2*h^2*d^2 + d^4 = -4*h * h*d^2
4,283
\left(e^{i \cdot t}\right)^{18} = e^{18 \cdot t \cdot i}
8,073
(1 + q + \dotsm + q^n) \cdot (q + (-1)) = (-1) + q^{n + 1}
-3,572
\dfrac{1}{t^2} \cdot t = \dfrac{t}{t \cdot t} = 1/t
3,928
\dfrac{100\cdot (-1) + 0}{(-1) + 8} = -\frac{100}{7}
50,529
\frac{e^{i*x}}{(x^2 + 2*x + 2)^2} = \tfrac{e^{i*x}}{(x + 1 + i) * (x + 1 + i)*(x + 1 - i)^2} = \dfrac{e^{i*x}}{(x + 1 - i)^2}*((x + 1 + i)^2)^{-1}
9,861
7^5\cdot 2^2\cdot 3^3\cdot 5^3 = 226894500
-7,782
\frac{20*i + 10}{4 + i*2}*\tfrac{1}{4 - i*2}*\left(4 - 2*i\right) = \frac{1}{2*i + 4}*(20*i + 10)
21,434
\rho_2 + \rho_1 + \rho_2 = 100\Longrightarrow \rho_1 + \rho_2*2 = 100
12,124
\dfrac1k = \frac{1}{k + (-1)}\cdot \frac1k\cdot \left(k + (-1)\right)
10,308
\cos(2*π/2) = \cos(π) = -1
-42
-21 + 6\cdot \left(-1\right) = -27
-30,911
-8\cdot f + 48 = -8\cdot f + 48
13,088
1^{\frac32} = (1^3)^{1/2} = 1^{\dfrac12} = 1
325
3*x*d = d*x*3
7,573
e^3 > (5/2)^3 = \frac{125}{8} > \frac{80}{8} = 10 > 3^2
22,367
9 = 10\cdot y - y \implies y = 1
12,835
x^3 = x \cdot x + x + 2\cdot (-1) + 2\cdot \sqrt{1 + x^3 - x^2 - x} \Rightarrow (x^3 - x^2 - x + 2) \cdot (x^3 - x^2 - x + 2) = 4\cdot (x^3 - x^2 - x + 1)
32,592
\cot{y \cdot 2} = 1 \implies \tan{2 \cdot y} = 1
-5,818
\frac{3}{8 + 4*l} = \dfrac{1}{4*\left(2 + l\right)}*3
23,426
x^6 + (-1) = (x^3 + (-1))\cdot (x^3 + 1) = (x + (-1))\cdot (x^2 + x + 1)\cdot \left(x + 1\right)\cdot (x^2 - x + 1)
1,724
2 \cdot \left( q, z\right) = ( q, z) + \left( q, z\right) = ( 2 \cdot q, 2 \cdot z)
30,831
\frac14\cdot 11\cdot 4^2 = 44
9,490
-z_{(-1) + i}^2 + z_i^2 = (-z_{(-1) + i} + z_i)\cdot (z_i + z_{(-1) + i})
18,320
36\cdot \left(\left\lfloor{x}\right\rfloor + x - \left\lfloor{x}\right\rfloor\right) = x\cdot 36
-7,658
\frac{-7 + 22\times i}{2 + 3\times i}\times \frac{1}{2 - i\times 3}\times \left(-i\times 3 + 2\right) = \frac{22\times i - 7}{2 + i\times 3}
10,256
\pi = \operatorname{atan}(\sqrt{3}/3)\cdot 6
-4,883
10^6 \cdot 0.49 = 0.49 \cdot 10^{11 + 5 \cdot (-1)}
-24,188
\frac{1}{9 + 8} 85 = \frac{85}{17} = \dfrac{1}{17} 85 = 5
4,509
-(x + 3*(-1))^2 + 4 = -((x + 3*(-1))^2 + 4*(-1))
39,255
2^3*2^3 = 2 2*2^4
-3,536
5*7/\left(5*20\right) = \frac{1}{100}35
32,454
y*(1 + y^2) + 1 = 1 + y^3 + y
8,542
3/4 = 1/(2*2) + \frac12
-22,295
\left(x + \left(-1\right)\right)*(x + 5*(-1)) = x^2 - 6*x + 5
-30,617
-4(y^2 + 7\left(-1\right)) = -y \cdot y \cdot 4 + 28
-3,516
15/100 = \frac{15}{5\cdot 20} 1
21,952
\binom{k + x + \left(-1\right)}{x} = \tfrac{((-1) + k + x)!}{x! \cdot (\left(-1\right) + k)!}
53,456
6300 = 210*3*10
32,889
E(W_2 W_1) = E(W_1) E(W_2)
29,814
3 \cdot 131 = 393
29,672
\dfrac{1}{3} \cdot 2 = \dfrac{2}{3}
29,437
2 \cdot y^4 - 1 - y^3 \cdot 3 = \left(2 \cdot y \cdot y + 1 - y\right) \cdot (-1 - y + y^2)
32,668
18 = 8(-1) + 27 + (-1)
15,717
k*\sigma^4*2 = \left(\sigma^2*2\right)^2*k/2
-374
\frac{\dfrac{1}{(4 \cdot (-1) + 8)! \cdot 4!} \cdot 8!}{10! \cdot \frac{1}{(10 + 4 \cdot (-1))! \cdot 4!}} = \dfrac{8! \cdot \frac{1}{4!}}{10! \cdot \frac{1}{6!}}
16,388
\left(\alpha + y\right)*z = \left(\alpha + y\right)*(z + 0) = \alpha*z + y*z
4,331
-(x + 10) * (x + 10) + \left(10 + x*2\right)^2 = x^2*3 + x*20
1,514
4 - 1/48 = \frac{1}{48}\cdot 191
-18,965
\dfrac{1}{15} \times 13 = \frac{1}{36 \times \pi} \times A_s \times 36 \times \pi = A_s
-25,828
2\cdot y^2 - y + 3 + \dfrac{2}{y + 6\cdot \left(-1\right)} = \frac{1}{y + 6\cdot \left(-1\right)}\cdot (y^3\cdot 2 - y \cdot y\cdot 13 + 9\cdot y + 16\cdot \left(-1\right))
5,217
(r^2 + 3 \cdot s^2) \cdot (r^2 + 3 \cdot s^2) = (-s^2 \cdot 3 + r^2)^2 + 3 \cdot \left(r \cdot s \cdot 2\right)^2
23,613
{(-1) + k \choose k} + {k + (-1) \choose (-1) + k} = {k \choose k}
8,968
-\frac{1}{2}\cos{2\theta} + \frac{1}{2} = \sin^2{\theta}
2,966
A + D = 180 - 180 - A - D
-28,786
\int x^5\,dx = \tfrac{x^{5 + 1}}{5 + 1} + C = \dfrac{x^6}{6} + C
34,844
16\cdot y^2 - 8\cdot y + 1 = \left(4\cdot y\right)^2 - 2\cdot 4\cdot y + 1^2 = (4\cdot y + (-1)) \cdot (4\cdot y + (-1))
6,530
b^i x = b^i x
12,415
a = e \implies e = a
32,280
A*A*A = A^3
-9,868
0.01 \times (-70) = -70/100 = -\dfrac{7}{10}
28,457
\tfrac{1}{4*2} = 1/8
14,867
1 + k^2\times 3 + k\times 3 = \left(k + 1\right)^3 - k^3
48,520
20! = (3 + 17)!
-6,600
\frac{2}{21*(-1) + x^2 - 4*x} = \frac{1}{\left(x + 3\right)*(7*(-1) + x)}*2
3,919
\sin\left(Z + B\right) = \sin{Z}\times \cos{B} + \cos{Z}\times \sin{B}
20,310
e\cdot b = (10\cdot e_1 + e_0)\cdot (10\cdot b_1 + b_0) = 10\cdot (10\cdot e_1\cdot b_1 + e_0\cdot b_1 + e_1\cdot b_0) + e_0\cdot b_0
24,775
((-1) + z)^2 + 6 = 7 + z^2 - 2\cdot z
-22,232
27\cdot (-1) + t^2 + 6\cdot t = (9 + t)\cdot (3\cdot (-1) + t)
31,375
0 = \frac{4}{h^3} + 2/h - \frac{b}{h^2} = \frac{1}{h^3} \cdot (4 + 2 \cdot h^2 - b \cdot h)
26,922
\frac{x - Q}{x + Q} = \frac{-Q + x}{x + Q}
23,958
-16 \cdot (-1^{\tfrac{1}{3}}) = 16
12,857
E[B] \times E[Q] = E[B \times Q]
-449
\frac{55}{12}\pi - 4\pi = \frac{7}{12}\pi
32,109
4 + 3\cdot 2 = 10
-30,875
4\times (-1) + 28 = 24
38,212
\left(n + 2 (-1)\right)! (n + (-1)) (n + (-1)) = ((-1) + n)! ((-1) + n)
8,447
6 + x \cdot x + x\cdot 6 = x^2 + 4\cdot x + 9 + x\cdot 2 + 3\cdot (-1)
-10,145
0.01\cdot \left(-48\right) = -\dfrac{48}{100} = -\frac{12}{25}
17,445
2(-1) + y^3 = (y - 2^{1/3}) (4^{1/3} + y^2 + y\cdot 2^{1/3})
37,829
m! \cdot \left(m + 2\right)! = \left((-1) + m\right)! \cdot (2 + m)! \cdot m
2,591
5 + 57/350 = \dfrac{1}{350}\times 1807
10,026
d^{\frac1x} = d^{1/x}
-20,280
\dfrac{1}{9}(4 + r)\cdot 5/5 = (r\cdot 5 + 20)/45
1,891
\mathbb{E}\left[B^4\right] = 0 \Rightarrow \mathbb{E}\left[B^2\right] = 0
37,032
4 = (4 + 2(-1)) \cdot 2