id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
-25,802 | \frac{5}{21} = \dfrac{5 / 3}{7} \cdot 1 |
-28,689 | z^2 - 6*z + 13 = z^2 - 6*z + 9 + 4 = \left(z + 3*(-1)\right) * \left(z + 3*(-1)\right) + 4 = (z*(-3))^2 + 2^2 |
16,674 | \cos(y + z) = -\sin{y} \cdot \sin{z} + \cos{y} \cdot \cos{z} |
13,417 | xz = 1 + x + (-1) + z + (-1) + (\left(-1\right) + x) ((-1) + z) |
38,238 | \alpha\cdot \beta = \alpha\cdot \beta |
9,424 | \dfrac{m}{m^u} = m^{-(u + (-1))} |
-5,278 | 45/100 = \frac{45.0}{100} |
1,641 | -\frac12 \cdot 2 \cdot \pi \cdot i = -i \cdot \pi |
12,466 | -\frac{1}{x_n + 1} + 1 = \dfrac{1}{x_n + 1} \cdot x_n |
7,397 | \frac{1}{4*3}*48 = 4 |
21,554 | 1 + ... + q^{x + 1} = \frac{1}{1 - q} \cdot \left(q^{1 + x} \cdot \left(-q + 1\right) + 1 - q^{1 + x}\right) |
3,766 | z*2 = 2 + 2*\left(z + \left(-1\right)\right) |
21,264 | |\frac{1}{1 + x x} - \dfrac{1}{1 + u u}| = |\frac{1}{\left(1 + x x\right) (1 + u^2)} (u^2 - x^2)| |
-20,790 | \frac{5\cdot k + 3}{k\cdot 5 + 3}\cdot (-\tfrac{2}{1}) = \dfrac{1}{k\cdot 5 + 3}\cdot (-10\cdot k + 6\cdot (-1)) |
17,482 | -(h^2 + d * d)^2 + (h^2 - d^2)^2 = -h^4 - 2*h^2*d * d - d^4 + h^4 - 2*h^2*d^2 + d^4 = -4*h * h*d^2 |
4,283 | \left(e^{i \cdot t}\right)^{18} = e^{18 \cdot t \cdot i} |
8,073 | (1 + q + \dotsm + q^n) \cdot (q + (-1)) = (-1) + q^{n + 1} |
-3,572 | \dfrac{1}{t^2} \cdot t = \dfrac{t}{t \cdot t} = 1/t |
3,928 | \dfrac{100\cdot (-1) + 0}{(-1) + 8} = -\frac{100}{7} |
50,529 | \frac{e^{i*x}}{(x^2 + 2*x + 2)^2} = \tfrac{e^{i*x}}{(x + 1 + i) * (x + 1 + i)*(x + 1 - i)^2} = \dfrac{e^{i*x}}{(x + 1 - i)^2}*((x + 1 + i)^2)^{-1} |
9,861 | 7^5\cdot 2^2\cdot 3^3\cdot 5^3 = 226894500 |
-7,782 | \frac{20*i + 10}{4 + i*2}*\tfrac{1}{4 - i*2}*\left(4 - 2*i\right) = \frac{1}{2*i + 4}*(20*i + 10) |
21,434 | \rho_2 + \rho_1 + \rho_2 = 100\Longrightarrow \rho_1 + \rho_2*2 = 100 |
12,124 | \dfrac1k = \frac{1}{k + (-1)}\cdot \frac1k\cdot \left(k + (-1)\right) |
10,308 | \cos(2*π/2) = \cos(π) = -1 |
-42 | -21 + 6\cdot \left(-1\right) = -27 |
-30,911 | -8\cdot f + 48 = -8\cdot f + 48 |
13,088 | 1^{\frac32} = (1^3)^{1/2} = 1^{\dfrac12} = 1 |
325 | 3*x*d = d*x*3 |
7,573 | e^3 > (5/2)^3 = \frac{125}{8} > \frac{80}{8} = 10 > 3^2 |
22,367 | 9 = 10\cdot y - y \implies y = 1 |
12,835 | x^3 = x \cdot x + x + 2\cdot (-1) + 2\cdot \sqrt{1 + x^3 - x^2 - x} \Rightarrow (x^3 - x^2 - x + 2) \cdot (x^3 - x^2 - x + 2) = 4\cdot (x^3 - x^2 - x + 1) |
32,592 | \cot{y \cdot 2} = 1 \implies \tan{2 \cdot y} = 1 |
-5,818 | \frac{3}{8 + 4*l} = \dfrac{1}{4*\left(2 + l\right)}*3 |
23,426 | x^6 + (-1) = (x^3 + (-1))\cdot (x^3 + 1) = (x + (-1))\cdot (x^2 + x + 1)\cdot \left(x + 1\right)\cdot (x^2 - x + 1) |
1,724 | 2 \cdot \left( q, z\right) = ( q, z) + \left( q, z\right) = ( 2 \cdot q, 2 \cdot z) |
30,831 | \frac14\cdot 11\cdot 4^2 = 44 |
9,490 | -z_{(-1) + i}^2 + z_i^2 = (-z_{(-1) + i} + z_i)\cdot (z_i + z_{(-1) + i}) |
18,320 | 36\cdot \left(\left\lfloor{x}\right\rfloor + x - \left\lfloor{x}\right\rfloor\right) = x\cdot 36 |
-7,658 | \frac{-7 + 22\times i}{2 + 3\times i}\times \frac{1}{2 - i\times 3}\times \left(-i\times 3 + 2\right) = \frac{22\times i - 7}{2 + i\times 3} |
10,256 | \pi = \operatorname{atan}(\sqrt{3}/3)\cdot 6 |
-4,883 | 10^6 \cdot 0.49 = 0.49 \cdot 10^{11 + 5 \cdot (-1)} |
-24,188 | \frac{1}{9 + 8} 85 = \frac{85}{17} = \dfrac{1}{17} 85 = 5 |
4,509 | -(x + 3*(-1))^2 + 4 = -((x + 3*(-1))^2 + 4*(-1)) |
39,255 | 2^3*2^3 = 2 2*2^4 |
-3,536 | 5*7/\left(5*20\right) = \frac{1}{100}35 |
32,454 | y*(1 + y^2) + 1 = 1 + y^3 + y |
8,542 | 3/4 = 1/(2*2) + \frac12 |
-22,295 | \left(x + \left(-1\right)\right)*(x + 5*(-1)) = x^2 - 6*x + 5 |
-30,617 | -4(y^2 + 7\left(-1\right)) = -y \cdot y \cdot 4 + 28 |
-3,516 | 15/100 = \frac{15}{5\cdot 20} 1 |
21,952 | \binom{k + x + \left(-1\right)}{x} = \tfrac{((-1) + k + x)!}{x! \cdot (\left(-1\right) + k)!} |
53,456 | 6300 = 210*3*10 |
32,889 | E(W_2 W_1) = E(W_1) E(W_2) |
29,814 | 3 \cdot 131 = 393 |
29,672 | \dfrac{1}{3} \cdot 2 = \dfrac{2}{3} |
29,437 | 2 \cdot y^4 - 1 - y^3 \cdot 3 = \left(2 \cdot y \cdot y + 1 - y\right) \cdot (-1 - y + y^2) |
32,668 | 18 = 8(-1) + 27 + (-1) |
15,717 | k*\sigma^4*2 = \left(\sigma^2*2\right)^2*k/2 |
-374 | \frac{\dfrac{1}{(4 \cdot (-1) + 8)! \cdot 4!} \cdot 8!}{10! \cdot \frac{1}{(10 + 4 \cdot (-1))! \cdot 4!}} = \dfrac{8! \cdot \frac{1}{4!}}{10! \cdot \frac{1}{6!}} |
16,388 | \left(\alpha + y\right)*z = \left(\alpha + y\right)*(z + 0) = \alpha*z + y*z |
4,331 | -(x + 10) * (x + 10) + \left(10 + x*2\right)^2 = x^2*3 + x*20 |
1,514 | 4 - 1/48 = \frac{1}{48}\cdot 191 |
-18,965 | \dfrac{1}{15} \times 13 = \frac{1}{36 \times \pi} \times A_s \times 36 \times \pi = A_s |
-25,828 | 2\cdot y^2 - y + 3 + \dfrac{2}{y + 6\cdot \left(-1\right)} = \frac{1}{y + 6\cdot \left(-1\right)}\cdot (y^3\cdot 2 - y \cdot y\cdot 13 + 9\cdot y + 16\cdot \left(-1\right)) |
5,217 | (r^2 + 3 \cdot s^2) \cdot (r^2 + 3 \cdot s^2) = (-s^2 \cdot 3 + r^2)^2 + 3 \cdot \left(r \cdot s \cdot 2\right)^2 |
23,613 | {(-1) + k \choose k} + {k + (-1) \choose (-1) + k} = {k \choose k} |
8,968 | -\frac{1}{2}\cos{2\theta} + \frac{1}{2} = \sin^2{\theta} |
2,966 | A + D = 180 - 180 - A - D |
-28,786 | \int x^5\,dx = \tfrac{x^{5 + 1}}{5 + 1} + C = \dfrac{x^6}{6} + C |
34,844 | 16\cdot y^2 - 8\cdot y + 1 = \left(4\cdot y\right)^2 - 2\cdot 4\cdot y + 1^2 = (4\cdot y + (-1)) \cdot (4\cdot y + (-1)) |
6,530 | b^i x = b^i x |
12,415 | a = e \implies e = a |
32,280 | A*A*A = A^3 |
-9,868 | 0.01 \times (-70) = -70/100 = -\dfrac{7}{10} |
28,457 | \tfrac{1}{4*2} = 1/8 |
14,867 | 1 + k^2\times 3 + k\times 3 = \left(k + 1\right)^3 - k^3 |
48,520 | 20! = (3 + 17)! |
-6,600 | \frac{2}{21*(-1) + x^2 - 4*x} = \frac{1}{\left(x + 3\right)*(7*(-1) + x)}*2 |
3,919 | \sin\left(Z + B\right) = \sin{Z}\times \cos{B} + \cos{Z}\times \sin{B} |
20,310 | e\cdot b = (10\cdot e_1 + e_0)\cdot (10\cdot b_1 + b_0) = 10\cdot (10\cdot e_1\cdot b_1 + e_0\cdot b_1 + e_1\cdot b_0) + e_0\cdot b_0 |
24,775 | ((-1) + z)^2 + 6 = 7 + z^2 - 2\cdot z |
-22,232 | 27\cdot (-1) + t^2 + 6\cdot t = (9 + t)\cdot (3\cdot (-1) + t) |
31,375 | 0 = \frac{4}{h^3} + 2/h - \frac{b}{h^2} = \frac{1}{h^3} \cdot (4 + 2 \cdot h^2 - b \cdot h) |
26,922 | \frac{x - Q}{x + Q} = \frac{-Q + x}{x + Q} |
23,958 | -16 \cdot (-1^{\tfrac{1}{3}}) = 16 |
12,857 | E[B] \times E[Q] = E[B \times Q] |
-449 | \frac{55}{12}\pi - 4\pi = \frac{7}{12}\pi |
32,109 | 4 + 3\cdot 2 = 10 |
-30,875 | 4\times (-1) + 28 = 24 |
38,212 | \left(n + 2 (-1)\right)! (n + (-1)) (n + (-1)) = ((-1) + n)! ((-1) + n) |
8,447 | 6 + x \cdot x + x\cdot 6 = x^2 + 4\cdot x + 9 + x\cdot 2 + 3\cdot (-1) |
-10,145 | 0.01\cdot \left(-48\right) = -\dfrac{48}{100} = -\frac{12}{25} |
17,445 | 2(-1) + y^3 = (y - 2^{1/3}) (4^{1/3} + y^2 + y\cdot 2^{1/3}) |
37,829 | m! \cdot \left(m + 2\right)! = \left((-1) + m\right)! \cdot (2 + m)! \cdot m |
2,591 | 5 + 57/350 = \dfrac{1}{350}\times 1807 |
10,026 | d^{\frac1x} = d^{1/x} |
-20,280 | \dfrac{1}{9}(4 + r)\cdot 5/5 = (r\cdot 5 + 20)/45 |
1,891 | \mathbb{E}\left[B^4\right] = 0 \Rightarrow \mathbb{E}\left[B^2\right] = 0 |
37,032 | 4 = (4 + 2(-1)) \cdot 2 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.