id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
8,137 | x^{10} + \left(-1\right) = \left(x^5 + 1\right) \cdot \left(x^5 + (-1)\right) |
11,753 | 4\cdot \pi/3 = \frac{1}{3}\cdot 4\cdot \pi |
18,543 | 4 + 4 \leq 5 + 1 \implies 6 \geq 8 |
40,025 | 100 \cdot 101 + \left(-1\right) = 10099 |
-175 | \frac{1}{(9 + 5\cdot (-1))!}\cdot 9! = 9\cdot 8\cdot 7\cdot 6\cdot 5 |
-17,420 | \dfrac{32.5}{100} = 0.325 |
-7,392 | \frac12*3 / 4 = 3/8 |
6,624 | -1 = \xi^k\Longrightarrow 1 = \xi^{2\cdot k} |
11,489 | 0 = 2i\pi*0 |
5,636 | x^3 + 6 x^2 + 11 x + 6 = (x + 1) (2 + x) (x + 3) |
29,088 | 2 \sin(x) \cos(x) = \sin(2 x) |
-17,717 | 56 + 53 (-1) = 3 |
22,020 | 4 + z^2 + 5 \times z = (1 + z) \times \left(z + 4\right) |
2,809 | -\frac{1}{1 + k} + \frac{k + 1}{k + 1} = 1 - \frac{1}{k + 1} |
18,082 | \left(-b + h\right) (h^{n + (-1)} + h^{n + 2\left(-1\right)} b + h^{n + 3(-1)} b * b \ldots b^{n + (-1)}) = -b^n + h^n |
23,986 | \dfrac{z^i}{b} \cdot b = (z/b \cdot b)^i |
45,846 | 2\cdot (-3) = -3 - 3 = -6 |
37,514 | 3 \cdot 3 \cdot 3 \cdot 2^4 = 432 |
-6,213 | \frac{3}{5\times x + 10\times (-1)} = \frac{3}{(x + 2\times (-1))\times 5} |
-9,396 | x*45 + 35 = 3*3*5*x + 5*7 |
1,541 | R\cdot 2 = R - -R |
20,435 | 4 = (-1)\cdot (-4) = \left(-4\right)\cdot (-1) |
-30,974 | 60 \cdot{1} = 60 |
12,833 | (a - b)^2 = b^2 + a^2 - a*b*2 |
1,998 | \frac{58!}{38!} = 3 \cdot 13 \cdot 58!/39! |
7,306 | \tfrac{s}{\sqrt{s^2 + 1}} = \frac{d}{ds} \sqrt{s^2 + 1} |
17,572 | x^2 + zx + z^2 = (x + z)^2 - xz |
26,241 | 2^{2 + i} = 2^3*2^{(-1) + i} |
17,306 | -3\cdot y^3 + y^2\cdot 8 + 5\cdot y + 6\cdot (-1) - 9\cdot y - y^3\cdot 3 + 6\cdot y^2 = y^2\cdot 2 - 4\cdot y + 6\cdot (-1) |
26,113 | A^{2001} = (A^2 \cdot A)^{667} |
-5,019 | 10^{5 + 0} \times 13.8 = 10^5 \times 13.8 |
-23,553 | \dfrac{4}{15} = \dfrac23 \cdot 2/5 |
-16,550 | 7 \cdot (9 \cdot 11)^{1/2} = 99^{1/2} \cdot 7 |
-6,149 | \frac{q\cdot 2}{9 + q^2 + q\cdot 10} = \dfrac{q\cdot 2}{(q + 1)\cdot (q + 9)}\cdot 1 |
-14,043 | 9 + \tfrac{27}{9} = 9 + 3 = 9 + 3 = 12 |
11,423 | \tan(\operatorname{atan}(x) + \operatorname{atan}(x \cdot x^2)) = \frac{x + x^3}{1 - x^4} = \frac{1}{1 - x^2}\cdot x |
20,315 | (z_1 + z_2) \left(z_2 - z_1\right) = z_2^2 - z_1^2 |
46,755 | 20 = 4^1 + 4^2 |
20,769 | 3g + E = (g + E) (g + E) (g + E) = \left(g + E\right)^2 \cdot (g + E) |
-23,426 | 2/5 = \tfrac{\frac{1}{5}*4}{2} |
-22,215 | n^2 + n \cdot 7 + 8 \cdot (-1) = \left(n + (-1)\right) \cdot (n + 8) |
-11,764 | \tfrac{1}{100} = 10^{-1} \cdot 10^{-1} |
17,246 | \tfrac{1}{3.4^{1/2}} = \dfrac{1}{(4 - 0.6)^{1/2}} = \frac{1}{2\cdot (1 - 0.15)^{1/2}} |
18,595 | \cos(t + \pi \cdot x) = \cos(t) \cdot \cos(\pi \cdot x) - \sin(t) \cdot \sin(\pi \cdot x) = (-1)^x \cdot \cos(t) |
20,940 | 295 = 5 \times 59 |
-9,432 | -2*2*2*2*x*x - x*2*2 = -4*x - 16*x^2 |
31,908 | \sin\left(z\right) = \sin\left(z + \pi*2\right) |
26,413 | 153 = 18*17/2 |
2,126 | E\left[B/B\right] = E\left[1\right] = 1 = \frac{E\left[B\right]}{E\left[B\right]} |
5,479 | \frac{4!}{2!}\cdot 3!/2! = 3!\cdot 3! = 36 |
16,456 | {10 \choose 2} \cdot 8! = \frac{10!}{2!} |
47,513 | 6 \cdot \binom{9}{2} \cdot 7! = 6 \cdot \frac{9!}{2! \cdot 7!} \cdot 7! = 3 \cdot 9! = 1088640 |
54,059 | 3 \cdot 3 = 9 = -1 |
31,080 | 1 = |9\cdot (-1) + 8| |
-4,629 | -\frac{1}{y + 4 \cdot (-1)} - \frac{1}{y + 3 \cdot (-1)} = \frac{-2 \cdot y + 7}{12 + y^2 - y \cdot 7} |
32,637 | 0 = a^7 + 1 = \left(a + 1\right) (a^6 - a^5 + a^4 - a^3 + a \cdot a - a + 1) |
6,943 | \frac{\pi*(-1)}{12} = -\frac{1}{4}*\pi + \pi/6 |
10,656 | (k^2 \cdot 2 + 2 \cdot k) \cdot 2 + 1 = (1 + k \cdot 2)^2 |
29,864 | d^{\eta + z} = d^z\cdot d^\eta |
-11,532 | -6 + 8 \times i = -3 + 3 \times (-1) + 8 \times i |
20,179 | a + g + h = a + g + h |
24,640 | X^2 B = X \cdot X B |
17 | 24 xx_2 x_1 = -(-x_1 + x + x_2) * (-x_1 + x + x_2) * (-x_1 + x + x_2) + (x_1 + x + x_2)^3 - (x_2 + x_1 - x)^3 - (-x_2 + x_1 + x)^2 * (x_1 + x - x_2) |
9,078 | g^{h + z} = g^z*g^h |
2,534 | h^{-1}g^rh=(h^{-1}gh)^r |
30,864 | (n + (-1))^2 + 1^2 = n^2 - n*2 + 2 |
11,658 | \left((-1) + 2^{k + (-1)}*3\right)*2 = 3*2^k + 2*(-1) |
5,032 | g^m g^l = g^{m + l} |
24,210 | \frac{1}{2}\pi = \frac{\pi}{2}\left(1 + 0\right) |
16,771 | 2 + 7 + 12 + 17 + \ldots + k \cdot 5 + 3 \cdot (-1) = \frac{k}{2} \cdot (5 \cdot k + (-1)) |
10,102 | \sin(\pi/2 - t) = \cos(t) |
16,657 | \left((-1)\cdot 35.7 + x = 4.1\cdot (-1.34) \Rightarrow x = 35.7 + 4.1\cdot (-1.34)\right) \Rightarrow 30.206 = x |
19,132 | z + 3 (-1) \geq 0 \implies 3 \leq z |
10,990 | \pi\cdot n\cdot 2 + \pi/2 = \left(4\cdot n + 1\right)\cdot \pi/2 |
27,035 | 2^8 + 2^{11} + 2^k = (2^{k + 8(-1)} + 9) (2^4)^2 |
-26,573 | 16 - 49 \cdot z^2 = -(z \cdot 7)^2 + 4 \cdot 4 |
7,729 | \dfrac{4!}{1!\cdot 3^1\cdot 1^1\cdot 1!} = 8 |
10,650 | R = x \cdot x \cdot x rightarrow R^{\frac{1}{3}} = x |
14,082 | \frac{2\cdot \frac{1}{17}}{5\cdot \frac{1}{17}} = \frac25 |
-5,365 | 10^{2 + 1} \cdot 3.6 = 10^3 \cdot 3.6 |
-9,459 | j \cdot 2 \cdot 2 \cdot 2 - j \cdot 2 \cdot 2 \cdot 7 \cdot j = 8 \cdot j - j^2 \cdot 28 |
25,929 | 0 = x^r + \left(-1\right) = (x + (-1))^r |
-20,298 | \frac{24}{72 (-1) - 80 k} = \frac188 \cdot \dfrac{3}{9(-1) - k \cdot 10} |
10,760 | x\cdot 2 + 1 + 2\cdot \alpha + 1 = 2\cdot (1 + \alpha + x) |
-7,708 | (-25 - 125*i - 5*i + 25)/26 = \frac{1}{26}*(0 - 130*i) = -5*i |
34,038 | \sum_{k=1}^n z_k x_k = \sum_{k=1}^n (z_k x_k + zx_k - zx_k) = \sum_{k=1}^n (z_k - z) x_k + \sum_{k=1}^n zx_k |
-23,475 | 5/14 = \dfrac{1}{2}\cdot 5 / 7 |
34,527 | n = 2^{n_1} \times n_2 = 2^{n_1} \times n_2 |
14,417 | \frac{1}{\ln(y + 1)} = \frac{1}{y\cdot (1 - y/2 - \dfrac13\cdot y \cdot y + y^3/4 + \dotsm)} |
14,420 | (\sqrt{x} + 2 \cdot (-1)) \cdot (\sqrt{x} + 2) = x + 4 \cdot (-1) |
539 | -\frac18\cdot (\cos{\pi} - \cos{0}) = -\tfrac{1}{8}\cdot (-1 + (-1)) = \frac14 |
3,021 | \cos(y) \sin\left(z\right) + \cos\left(z\right) \sin\left(y\right) = \sin(y + z) |
-10,408 | -\dfrac{1}{9 + 3 m} 9 = -\frac{3}{3 + m}\cdot 3/3 |
15,111 | \left( x, C \cdot z \cdot \Phi(g)\right) = ( x, \Phi(g) \cdot z \cdot C) |
10,931 | \sin(\dfrac{21\cdot x}{2} - 2\cdot x/2) = \sin{\frac{19}{2}\cdot x} |
-23,245 | 4/9*\frac{1}{7}*3 = 4/21 |
2,208 | \dfrac{4 + (-1)}{52 + \left(-1\right)} = \tfrac{1}{51}3 = \frac{1}{17} |
4,549 | x^2 b^2 = (b x)^2 |
8,907 | 1 - 4 \cdot (x + 3 \cdot \left(-1\right)) = 1 - 4 \cdot x + 12 \cdot \left(-1\right) = 1 - 4 \cdot x + 12 = 13 - 4 \cdot x |
33,228 | 2*x^2 = 2*x*x = 2*x*x = x*x = x * x |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.