id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
-7,005 | 1/7 = \frac{3}{7}*\frac26 |
2,554 | (2 + y)*(y + 5) = y * y + 7*y + 10 |
14,867 | 1 + k^2*3 + 3*k = \left(k + 1\right)^3 - k^3 |
2,773 | (4k+1)+(4l+1) = 4(k+l)+2 |
10,789 | a^{i\cdot l} = a^{i\cdot l} |
-15,913 | 48/10 = 6*9/10 - \frac{1}{10}*6 |
44,630 | 2^{3} = 2 \cdot 2 \cdot 2 \cdot 1 = 8 |
19,661 | g + a\cdot z = 0\Longrightarrow -\frac1a\cdot g = z |
13,676 | 6*(-1)^2 * (-1) = -6 |
2,009 | \lim_{h \to 0} g\times b = \lim_{h \to 0} g\times \lim_{h \to 0} b |
11,628 | \frac{1}{2} \cdot \left(-\cos(2 \cdot x) + 1\right) = \sin^2(x) |
27,373 | (1 + 2 + 3 + 4 + 5 + 6)/6 = 7/2 |
9,917 | 4*k^2 = (-2*k)^2 |
25,320 | \ln(2) = 1 - 1/2 + 1/3 - 1/4 + 1/5 - \frac{\dotsm}{6} |
27,258 | (1 + 2 + 3 + 4 + 5)\cdot 60/5\cdot 111 = 19980 |
22,333 | -\sin^2\left(y\right) \cdot 2 + 1 = \cos\left(2 \cdot y\right) |
22,885 | (q^2 + p^2)^2 = (p^2 - q^2)^2 + (2*p*q)^2 |
6,321 | \tfrac{1}{25} = \tfrac{1^{-1}}{\frac{1}{\frac{1}{25}}} |
-3,516 | 15/100 = 5*3/(20*5) |
-606 | e^{\pi \cdot i \cdot 4/3 \cdot 8} = (e^{4 \cdot \pi \cdot i/3})^8 |
28,244 | (n + 1)! = 1 \cdot 2 \cdot \ldots \cdot n \cdot (n + 1) = n! \cdot (n + 1) |
26,424 | 2 + 8 + 24 + 64 + \dotsm + n\cdot 2^n = 2\cdot (1 + 2^n\cdot (n + (-1))) |
-22,129 | \dfrac{9}{27}=\dfrac{1}{3} |
-12,627 | \dfrac{198}{2} = 99 |
24,275 | 0 = -3\cdot 1^2 + 3 |
3,238 | 2\cdot x + 4\cdot x = 6\cdot x |
-21,003 | \frac{1}{20}*(-10*i + 4) = \dfrac{1}{10}*(-5*i + 2)*\frac{2}{2} |
34,721 | \arcsin(-1/2) = \frac{(-1)\cdot \pi}{6} |
26,498 | z_1\cdot z_2/(z_2) = \frac{1}{z_2}\cdot z_1\cdot z_2 |
9,848 | f\cdot g - x\cdot c = f\cdot g - c\cdot 0 + 0\cdot g - x\cdot c = f\cdot g - x\cdot c |
6,958 | x + 20*\left(-1\right) + x = x*2 + 20*(-1) |
34,666 | 2*1*2=4 |
6,653 | 1 = ((-1) + 4 + 3\cdot (-1) + 2)/2 |
16,510 | \dfrac{1}{a} \cdot a^{1 + q} = a^q |
15,569 | 2/3 \cdot \dfrac{2}{3} = \frac{2 \cdot 2}{3 \cdot 3} = \dfrac49 |
2,113 | \frac{n}{n^2 + 2\cdot n + 1} \gt \frac{1}{n^2 + 2\cdot n^2 + n^2}\cdot n = \dfrac{1}{4\cdot n \cdot n}\cdot n = 1/\left(4\cdot n\right) |
-9,232 | -q\cdot 2\cdot 2\cdot 5 + 2\cdot 2\cdot 3 = -20\cdot q + 12 |
38,326 | \tan^2{\pi/6} = \frac13 |
19,511 | \frac{50\cdot \frac{1}{100}}{2} = 1/(2\cdot 2) = 1/4 |
5,786 | h^b\cdot h^c = h^{b + c} |
7,013 | (n^2 + \tfrac{n}{2} + 1) \cdot (n^2 + \tfrac{n}{2} + 1) = n^4 + n^3 + 9/4 \cdot n^2 + n + 1 > n^4 + n^3 + n^2 + n + 1 |
-20,251 | \frac{1}{l + (-1)}\cdot \left(-l\cdot 7 + 7\right) = \frac{(-1) + l}{l + (-1)}\cdot (-\frac{7}{1}) |
-2,708 | \sqrt{6} + \sqrt{6}*4 + 5*\sqrt{6} = \sqrt{6} + \sqrt{6}*\sqrt{16} + \sqrt{25}*\sqrt{6} |
4,378 | 3 + 2\cdot x + 2 = x\cdot 2 + 5 |
-18,408 | \frac{1}{-3 \cdot t + t^2} \cdot (t^2 - 10 \cdot t + 21) = \frac{1}{\left(3 \cdot \left(-1\right) + t\right) \cdot t} \cdot (7 \cdot \left(-1\right) + t) \cdot \left(3 \cdot (-1) + t\right) |
-7,934 | (16 + 8i + 32 i + 16 \left(-1\right))/20 = \frac{1}{20}(0 + 40 i) = 2i |
10,535 | \dfrac{n^2}{1 + n \cdot n} = -\frac{1}{n^2 + 1} + 1 |
8,680 | -4\cdot (1 - 2\cdot x) = \left(-x\cdot 2 + 1\right)\cdot (-x + 1) |
-4,435 | z^2 + 3 \cdot z + 2 = \left(z + 1\right) \cdot (2 + z) |
11,860 | \frac{1}{(p + 1)\cdot \left(p + (-1)\right)} = \frac{Z}{1 + p} + \frac{A}{(-1) + p}\Longrightarrow 1 = (A + Z)\cdot p + A - Z |
-25,868 | b^4 = \frac{b^{10}}{b^6} |
21,892 | (2 \cdot n + (-1) + 2 + (-1))/2 = n |
14,882 | 15 = {3 \choose 0}*{7 + 0*(-1) + (-1) \choose (-1) + 3} |
-7,826 | \dfrac{3 i + 3}{i \cdot 3 + 3} \dfrac{12 - 18 i}{-3 i + 3} = \dfrac{1}{3 - 3 i} (-18 i + 12) |
-2,956 | (4 + 5 + 2) \cdot 6^{\frac{1}{2}} = 11 \cdot 6^{\frac{1}{2}} |
-20,188 | \frac{7}{7} \cdot \frac{1}{10} \cdot (6 \cdot (-1) - x \cdot 9) = \frac{1}{70} \cdot (42 \cdot (-1) - 63 \cdot x) |
10,256 | \pi = 6 \arctan(\frac{\sqrt{3}}{3}) |
10,958 | n*K = K*n |
9,744 | 16/3 = -\left((\left(-1\right) + 1)^3 - \left(1 + 1\right) \cdot \left(1 + 1\right) \cdot \left(1 + 1\right)\right) \frac23 |
-9,085 | 77.1\% = 77.1/100 |
28,049 | \left(c = A x \Rightarrow x = x A x\right) \Rightarrow x A = c |
39,095 | \cot{\theta} = \dfrac{1}{\tan{\theta}} |
6,706 | (d - h)^2 = -\frac1s + s \implies |-h + d| = (s - 1/s)^{\frac{1}{2}} |
28,557 | (-1) + 2^{3^2 * 3*13*5*4} = 2^{3510*2} + \left(-1\right) |
9,401 | a^2 d^2 + (-1) = ((-1) + ad) (da + 1) |
32,351 | \left(3 + \sqrt{3}\right)*\sqrt{2} = \sqrt{6} + 3*\sqrt{2} |
-6,004 | \frac{4\cdot b}{5\cdot \left(-1\right) + b^2 - b\cdot 4} = \tfrac{b\cdot 4}{(1 + b)\cdot (5\cdot (-1) + b)} |
-9,374 | 2 \cdot 3 \cdot 7 + 2 \cdot 3 \cdot 7 \cdot x = x \cdot 42 + 42 |
27,016 | 1 = |1| = |1 - a_m + a_m| \leq |1 - a_m| + |a_m| = |a_m + \left(-1\right)| + |a_m| < \dfrac{1}{2} + |a_m| |
-4,439 | ((-1) + z) \left(1 + z\right) = z^2 + (-1) |
-3,705 | \frac{x^5}{x} = x \cdot x \cdot x \cdot x \cdot x/x = x^4 |
32,263 | 0 = 0 \cdot 4 |
-7,110 | \tfrac{2}{15} = 2/10 \cdot 6/9 |
22,020 | z^2 + z\cdot 5 + 4 = (4 + z)\cdot (z + 1) |
-7,297 | \frac{5}{68} = \frac{1}{17} \cdot 5 \cdot 4/16 |
3,742 | a \cdot a + 2 \cdot a \cdot \varepsilon + \varepsilon \cdot \varepsilon = (a + \varepsilon)^2 |
30,925 | \left(24^2 + 5^2 + (-1)\right)/(24*5) = 5 |
-6,688 | 60/100 + 9/100 = \frac{6}{10} + \frac{9}{100} |
37,383 | \operatorname{P}(k) = H^k\cdot Y = Y\cdot H^k |
17,369 | 1/(1/81) = \frac{1}{\frac{1}{3^4}} |
27,431 | \frac{1}{Y_k} \cdot V_k = \frac{a_k \cdot V_k}{a_k \cdot Y_k} = a_k/\left(Y_k\right) \cdot \dfrac{V_k}{a_k} |
5,243 | \cot{\frac14\times (\pi\times \left(-1\right))} = \cot{3\times \pi/4} |
44,484 | 210 = 21\cdot 20/2 |
15,473 | (z^3)^2 = z^6 = (z^2)^3 |
5,096 | N\cdot 2^{N + (-1)} = \frac{N\cdot 2^{(-1) + N}}{2^N + (-1)}\cdot 1\cdot \left(\left(-1\right) + 2^N\right) |
32,713 | s \cdot s + (-1) + 3 = 2 + s^2 |
5,133 | \dfrac{1}{9} \cdot 5 \cdot \delta = w \Rightarrow \delta = w \cdot \dfrac{9}{5} |
-19,240 | 4/9 = A_p/(9\pi) \cdot 9\pi = A_p |
29,012 | 54 + 4\cdot 144 = 630 |
-9,561 | 75\% = \dfrac{75}{100} = \dfrac{3}{4} |
22,416 | r^i \cdot p \cdot r^t = r^t \cdot p \cdot r^i |
14,131 | (i + 2)! = (i + 2)\cdot (i + 1)\cdot i\cdot \ldots\cdot 2 = (i + 2)\cdot \left(i + 1\right)! |
-20,217 | \frac{1}{-21}(28 - 42 l) = \frac{1}{-3}(-l \cdot 6 + 4) \frac{7}{7} |
13,908 | 2 + 3 + 4 + 5 = (2 + 3 + 4 + 5 + 5 + 4 + 3 + 2) \cdot 1/2 |
-23,025 | \frac{130}{91} = \frac{10 \cdot 13}{7 \cdot 13} |
5,161 | T = T^{\dfrac{1}{2}} \cdot T^{\dfrac{1}{2}} |
23,073 | 70 = {15 \choose 2} - {6 \choose 2} - {5 \choose 2}\times 2 |
15,380 | 5 \cdot u = 15 \implies u = 3 |
5,819 | \tfrac{5}{12}*\dfrac{25}{25} = 125/300 |
-28,631 | y^2 - 8 \cdot y + 65 = y^2 - 8 \cdot y + 16 + 49 = (y + 4 \cdot (-1))^2 + 49 = (y \cdot (-4)) \cdot (y \cdot (-4)) + 7^2 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.