id
int64
-30,985
55.9k
text
stringlengths
5
437k
-7,005
1/7 = \frac{3}{7}*\frac26
2,554
(2 + y)*(y + 5) = y * y + 7*y + 10
14,867
1 + k^2*3 + 3*k = \left(k + 1\right)^3 - k^3
2,773
(4k+1)+(4l+1) = 4(k+l)+2
10,789
a^{i\cdot l} = a^{i\cdot l}
-15,913
48/10 = 6*9/10 - \frac{1}{10}*6
44,630
2^{3} = 2 \cdot 2 \cdot 2 \cdot 1 = 8
19,661
g + a\cdot z = 0\Longrightarrow -\frac1a\cdot g = z
13,676
6*(-1)^2 * (-1) = -6
2,009
\lim_{h \to 0} g\times b = \lim_{h \to 0} g\times \lim_{h \to 0} b
11,628
\frac{1}{2} \cdot \left(-\cos(2 \cdot x) + 1\right) = \sin^2(x)
27,373
(1 + 2 + 3 + 4 + 5 + 6)/6 = 7/2
9,917
4*k^2 = (-2*k)^2
25,320
\ln(2) = 1 - 1/2 + 1/3 - 1/4 + 1/5 - \frac{\dotsm}{6}
27,258
(1 + 2 + 3 + 4 + 5)\cdot 60/5\cdot 111 = 19980
22,333
-\sin^2\left(y\right) \cdot 2 + 1 = \cos\left(2 \cdot y\right)
22,885
(q^2 + p^2)^2 = (p^2 - q^2)^2 + (2*p*q)^2
6,321
\tfrac{1}{25} = \tfrac{1^{-1}}{\frac{1}{\frac{1}{25}}}
-3,516
15/100 = 5*3/(20*5)
-606
e^{\pi \cdot i \cdot 4/3 \cdot 8} = (e^{4 \cdot \pi \cdot i/3})^8
28,244
(n + 1)! = 1 \cdot 2 \cdot \ldots \cdot n \cdot (n + 1) = n! \cdot (n + 1)
26,424
2 + 8 + 24 + 64 + \dotsm + n\cdot 2^n = 2\cdot (1 + 2^n\cdot (n + (-1)))
-22,129
\dfrac{9}{27}=\dfrac{1}{3}
-12,627
\dfrac{198}{2} = 99
24,275
0 = -3\cdot 1^2 + 3
3,238
2\cdot x + 4\cdot x = 6\cdot x
-21,003
\frac{1}{20}*(-10*i + 4) = \dfrac{1}{10}*(-5*i + 2)*\frac{2}{2}
34,721
\arcsin(-1/2) = \frac{(-1)\cdot \pi}{6}
26,498
z_1\cdot z_2/(z_2) = \frac{1}{z_2}\cdot z_1\cdot z_2
9,848
f\cdot g - x\cdot c = f\cdot g - c\cdot 0 + 0\cdot g - x\cdot c = f\cdot g - x\cdot c
6,958
x + 20*\left(-1\right) + x = x*2 + 20*(-1)
34,666
2*1*2=4
6,653
1 = ((-1) + 4 + 3\cdot (-1) + 2)/2
16,510
\dfrac{1}{a} \cdot a^{1 + q} = a^q
15,569
2/3 \cdot \dfrac{2}{3} = \frac{2 \cdot 2}{3 \cdot 3} = \dfrac49
2,113
\frac{n}{n^2 + 2\cdot n + 1} \gt \frac{1}{n^2 + 2\cdot n^2 + n^2}\cdot n = \dfrac{1}{4\cdot n \cdot n}\cdot n = 1/\left(4\cdot n\right)
-9,232
-q\cdot 2\cdot 2\cdot 5 + 2\cdot 2\cdot 3 = -20\cdot q + 12
38,326
\tan^2{\pi/6} = \frac13
19,511
\frac{50\cdot \frac{1}{100}}{2} = 1/(2\cdot 2) = 1/4
5,786
h^b\cdot h^c = h^{b + c}
7,013
(n^2 + \tfrac{n}{2} + 1) \cdot (n^2 + \tfrac{n}{2} + 1) = n^4 + n^3 + 9/4 \cdot n^2 + n + 1 > n^4 + n^3 + n^2 + n + 1
-20,251
\frac{1}{l + (-1)}\cdot \left(-l\cdot 7 + 7\right) = \frac{(-1) + l}{l + (-1)}\cdot (-\frac{7}{1})
-2,708
\sqrt{6} + \sqrt{6}*4 + 5*\sqrt{6} = \sqrt{6} + \sqrt{6}*\sqrt{16} + \sqrt{25}*\sqrt{6}
4,378
3 + 2\cdot x + 2 = x\cdot 2 + 5
-18,408
\frac{1}{-3 \cdot t + t^2} \cdot (t^2 - 10 \cdot t + 21) = \frac{1}{\left(3 \cdot \left(-1\right) + t\right) \cdot t} \cdot (7 \cdot \left(-1\right) + t) \cdot \left(3 \cdot (-1) + t\right)
-7,934
(16 + 8i + 32 i + 16 \left(-1\right))/20 = \frac{1}{20}(0 + 40 i) = 2i
10,535
\dfrac{n^2}{1 + n \cdot n} = -\frac{1}{n^2 + 1} + 1
8,680
-4\cdot (1 - 2\cdot x) = \left(-x\cdot 2 + 1\right)\cdot (-x + 1)
-4,435
z^2 + 3 \cdot z + 2 = \left(z + 1\right) \cdot (2 + z)
11,860
\frac{1}{(p + 1)\cdot \left(p + (-1)\right)} = \frac{Z}{1 + p} + \frac{A}{(-1) + p}\Longrightarrow 1 = (A + Z)\cdot p + A - Z
-25,868
b^4 = \frac{b^{10}}{b^6}
21,892
(2 \cdot n + (-1) + 2 + (-1))/2 = n
14,882
15 = {3 \choose 0}*{7 + 0*(-1) + (-1) \choose (-1) + 3}
-7,826
\dfrac{3 i + 3}{i \cdot 3 + 3} \dfrac{12 - 18 i}{-3 i + 3} = \dfrac{1}{3 - 3 i} (-18 i + 12)
-2,956
(4 + 5 + 2) \cdot 6^{\frac{1}{2}} = 11 \cdot 6^{\frac{1}{2}}
-20,188
\frac{7}{7} \cdot \frac{1}{10} \cdot (6 \cdot (-1) - x \cdot 9) = \frac{1}{70} \cdot (42 \cdot (-1) - 63 \cdot x)
10,256
\pi = 6 \arctan(\frac{\sqrt{3}}{3})
10,958
n*K = K*n
9,744
16/3 = -\left((\left(-1\right) + 1)^3 - \left(1 + 1\right) \cdot \left(1 + 1\right) \cdot \left(1 + 1\right)\right) \frac23
-9,085
77.1\% = 77.1/100
28,049
\left(c = A x \Rightarrow x = x A x\right) \Rightarrow x A = c
39,095
\cot{\theta} = \dfrac{1}{\tan{\theta}}
6,706
(d - h)^2 = -\frac1s + s \implies |-h + d| = (s - 1/s)^{\frac{1}{2}}
28,557
(-1) + 2^{3^2 * 3*13*5*4} = 2^{3510*2} + \left(-1\right)
9,401
a^2 d^2 + (-1) = ((-1) + ad) (da + 1)
32,351
\left(3 + \sqrt{3}\right)*\sqrt{2} = \sqrt{6} + 3*\sqrt{2}
-6,004
\frac{4\cdot b}{5\cdot \left(-1\right) + b^2 - b\cdot 4} = \tfrac{b\cdot 4}{(1 + b)\cdot (5\cdot (-1) + b)}
-9,374
2 \cdot 3 \cdot 7 + 2 \cdot 3 \cdot 7 \cdot x = x \cdot 42 + 42
27,016
1 = |1| = |1 - a_m + a_m| \leq |1 - a_m| + |a_m| = |a_m + \left(-1\right)| + |a_m| < \dfrac{1}{2} + |a_m|
-4,439
((-1) + z) \left(1 + z\right) = z^2 + (-1)
-3,705
\frac{x^5}{x} = x \cdot x \cdot x \cdot x \cdot x/x = x^4
32,263
0 = 0 \cdot 4
-7,110
\tfrac{2}{15} = 2/10 \cdot 6/9
22,020
z^2 + z\cdot 5 + 4 = (4 + z)\cdot (z + 1)
-7,297
\frac{5}{68} = \frac{1}{17} \cdot 5 \cdot 4/16
3,742
a \cdot a + 2 \cdot a \cdot \varepsilon + \varepsilon \cdot \varepsilon = (a + \varepsilon)^2
30,925
\left(24^2 + 5^2 + (-1)\right)/(24*5) = 5
-6,688
60/100 + 9/100 = \frac{6}{10} + \frac{9}{100}
37,383
\operatorname{P}(k) = H^k\cdot Y = Y\cdot H^k
17,369
1/(1/81) = \frac{1}{\frac{1}{3^4}}
27,431
\frac{1}{Y_k} \cdot V_k = \frac{a_k \cdot V_k}{a_k \cdot Y_k} = a_k/\left(Y_k\right) \cdot \dfrac{V_k}{a_k}
5,243
\cot{\frac14\times (\pi\times \left(-1\right))} = \cot{3\times \pi/4}
44,484
210 = 21\cdot 20/2
15,473
(z^3)^2 = z^6 = (z^2)^3
5,096
N\cdot 2^{N + (-1)} = \frac{N\cdot 2^{(-1) + N}}{2^N + (-1)}\cdot 1\cdot \left(\left(-1\right) + 2^N\right)
32,713
s \cdot s + (-1) + 3 = 2 + s^2
5,133
\dfrac{1}{9} \cdot 5 \cdot \delta = w \Rightarrow \delta = w \cdot \dfrac{9}{5}
-19,240
4/9 = A_p/(9\pi) \cdot 9\pi = A_p
29,012
54 + 4\cdot 144 = 630
-9,561
75\% = \dfrac{75}{100} = \dfrac{3}{4}
22,416
r^i \cdot p \cdot r^t = r^t \cdot p \cdot r^i
14,131
(i + 2)! = (i + 2)\cdot (i + 1)\cdot i\cdot \ldots\cdot 2 = (i + 2)\cdot \left(i + 1\right)!
-20,217
\frac{1}{-21}(28 - 42 l) = \frac{1}{-3}(-l \cdot 6 + 4) \frac{7}{7}
13,908
2 + 3 + 4 + 5 = (2 + 3 + 4 + 5 + 5 + 4 + 3 + 2) \cdot 1/2
-23,025
\frac{130}{91} = \frac{10 \cdot 13}{7 \cdot 13}
5,161
T = T^{\dfrac{1}{2}} \cdot T^{\dfrac{1}{2}}
23,073
70 = {15 \choose 2} - {6 \choose 2} - {5 \choose 2}\times 2
15,380
5 \cdot u = 15 \implies u = 3
5,819
\tfrac{5}{12}*\dfrac{25}{25} = 125/300
-28,631
y^2 - 8 \cdot y + 65 = y^2 - 8 \cdot y + 16 + 49 = (y + 4 \cdot (-1))^2 + 49 = (y \cdot (-4)) \cdot (y \cdot (-4)) + 7^2