id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
-20,228 | -\frac{1}{2 + 2 \cdot y} \cdot 18 = -\frac{9}{1 + y} \cdot 2/2 |
20,885 | 1 + p + p^2 + \cdots = \dfrac{1}{-p + 1} |
28,251 | x^2 + 50^2 = (x + 10) * (x + 10) = x^2 + 100 + 20 x |
2,519 | \tfrac{1}{R\cdot x} = 1/(R\cdot x) |
18,910 | 2^8 = 6^{-1/4 + x\cdot 0.5} rightarrow 6^{16}\cdot 2^{8\cdot 64} = 6^{32\cdot x} |
4,449 | \left(x_1 + x_2\right) \cdot \left(x_1 + x_2\right) = x_1^2 + x_2^2 + 2x_1 x_2 \leq x_1^2 + x_2 \cdot x_2 + x_1^2 + x_2 \cdot x_2 |
-30,603 | (y*5 + 2)*3 = 6 + 15*y |
36,124 | |1/((-1)\cdot z) - z| = |z + 1/z| |
6,536 | x = \dfrac{x}{4} + \frac{x}{4} + x/4 + x/4 |
10,337 | n + 1 - x + z = n + 1 - x - z |
35,513 | \cos(2\pi*4) + 2 = 3 |
20,549 | 250^{(-1) + z*3}*250^2 = 250^{1 + z*3} |
-20,002 | -7/4\cdot \frac{1}{-x\cdot 2 + 3\cdot \left(-1\right)}\cdot (-x\cdot 2 + 3\cdot \left(-1\right)) = \dfrac{1}{-8\cdot x + 12\cdot \left(-1\right)}\cdot (x\cdot 14 + 21) |
13,090 | z = 5\cdot \left(7\cdot z_2 + a\right) + 1 = 35\cdot z_2 + 5\cdot a + 1 |
8,349 | 3\cdot y^2 - 4\cdot y + 7 = 4 + l\cdot y \Rightarrow y^2\cdot 3 - y\cdot \left(l + 4\right) + 3 = 0 |
33,393 | \mathbb{E}(Z_1 \cdot Z_2) = \mathbb{E}(Z_1) \cdot \mathbb{E}(Z_2) |
27,955 | \tan^2{x} = \tfrac{\sin^2{x}}{1 - \sin^2{x}} |
33,634 | 2*j_2 + 1 - 2*j_1 + 1 = 2*j_2 - 2*j_1 = 2*\left(j_2 - j_1\right) |
25,445 | (c + d)^3 = d^3 + 3*d^2*c + 3*d*c^2 + c^3 |
22,748 | -x^2 + x + x = 2 \cdot x - x^2 |
23,843 | 25 = \left(-1\right) \left(-25\right) |
42,546 | 1007 + 671 + 335 \cdot (-1) = 1343 |
32,107 | Y*v = Y*v |
-22,224 | 20 + y^2 + y\cdot 9 = (y + 5)\cdot (y + 4) |
40,600 | i \times i \times i = i^{2 + 1} = i^2 \times i = -i = -i |
46,751 | 2^3 \times 3 = 24 |
39,391 | \lim_{v \to 2} \frac{v + 2\cdot \left(-1\right)}{v \cdot v \cdot v + 8\cdot \left(-1\right)} = \lim_{v \to 2} \frac{v + 2\cdot (-1)}{(v + 2\cdot (-1))\cdot (v^2 + 4\cdot v + 4)} = \lim_{v \to 2} \frac{1}{v^2 + 4\cdot v + 4} |
-20,282 | (5 + t)/4 \cdot \frac{1}{3}3 = \frac{1}{12}(15 + 3t) |
19,190 | \cos{-\frac{1}{2}} = \cos{\frac12} |
1,490 | \left(4 + z^2 - y^2 - 4z = 0 \Rightarrow (2(-1) + z) * (2(-1) + z) - y^2 = 0\right) \Rightarrow 0 = (-y + z + 2(-1)) (y + z + 2(-1)) |
18,393 | \left(z_1 + z_2\right) (z_1 - z_2) = -z_2^2 + z_1^2 |
33,571 | \frac{3}{2} = \frac{1}{2} 3 |
21,989 | -g = g \Rightarrow g = 0 |
26,628 | 40320 = 8\cdot 7\cdot 6\cdot ...\cdot 3\cdot 2 |
25,686 | -45 > -(z + z + 2) \implies -(2 \cdot z + 2) < -45 |
10,565 | \left(y + 1\right)*(y^2 + 1)*(y + \left(-1\right)) = y^4 + \left(-1\right) |
38,986 | 1007 = \left\lfloor{\left(2015\cdot 504\right)^{1/2}}\right\rfloor |
26,444 | 2^n - 2^{n + (-1)} = 2^{n + (-1)} \cdot (2 + (-1)) = 2^{n + \left(-1\right)} \cdot (\cdots!)! |
3,570 | 3^n - 3^{2 \cdot (-1) + n} = 3^{n + 2 \cdot (-1)} \cdot \left(\left(-1\right) + 9\right) |
9,041 | \frac{h}{d}\cdot d = \tfrac{h\cdot d}{d} |
21,700 | \cos(3*x) = -\cos(x)*3 + 4*\cos^3\left(x\right) |
-20,329 | -10/1 \times \frac{z}{6 \times z} \times 6 = \frac{z \times (-60)}{6 \times z} |
27,327 | exe = eex = ex |
833 | L^2 + L \cdot x - x \cdot L - x \cdot x = (L + x) \cdot (L - x) |
25,291 | A^n = (-3)^{n + \left(-1\right)}\cdot A = -\frac{\left(-3\right)^n}{3}\cdot A |
-3,178 | \sqrt{7} \cdot 4 - \sqrt{7} \cdot 3 = \sqrt{7} \cdot \sqrt{16} - \sqrt{9} \cdot \sqrt{7} |
22,161 | 0 = (1 - \frac{1}{a \times b}) \times (b - a) = \frac{1}{a \times b} \times \left(b - a\right) \times (a \times b + \left(-1\right)) |
27,297 | 8 = 2 \cdot 4!/3! |
17,807 | V_1 = \frac{1}{2} \cdot (V_1 + V_2) + W \cdot V_2 = \dfrac{1}{2} \cdot (V_1 + V_2) - W |
19,040 | \frac{b^2}{h + b} = -\tfrac{h \cdot b}{b + h} + b |
-1,783 | \dfrac34 \pi + \pi\cdot 11/6 = \pi\cdot 31/12 |
18,395 | 81 = 4*3^3 + 27 (-1) |
-26,583 | -10 \cdot y^2 + 640 = (-y^2 + 64) \cdot 10 |
-20,159 | \frac{1}{24 \cdot (-1) + 3 \cdot y} \cdot (-y + 8) = -1/3 \cdot \frac{1}{y + 8 \cdot (-1)} \cdot (y + 8 \cdot (-1)) |
-10,422 | -16 = -14 + 5 \cdot x + 2 = 5 \cdot x + 12 \cdot (-1) |
17,830 | \cos(\dfrac{π}{4}) = \frac{1}{2^{\tfrac{1}{2}}} = \frac{1}{2}2^{1 / 2} |
11,219 | g \approx a\Longrightarrow a \approx g |
16,573 | 2^l\cdot 2 + (-1) = -2^l + 2^l\cdot 3 + (-1) |
13,565 | 10^3 \cdot 2.0 \cdot 5.0 \cdot 10^{13} = 10^{17} \cdot 1 |
25,943 | 1 + \frac{1}{2} 3 + 3 = \frac{1}{2} 11 |
3,482 | {6 \choose 4}*\frac{1}{6^6} 5^2 = \tfrac{1}{46656} 375 |
-3,144 | 208^{1/2} - 13^{1/2} = (16 \cdot 13)^{1/2} - 13^{1/2} |
-20,701 | -7/1 \cdot \frac{1}{8 \cdot (-1) + n} \cdot (n + 8 \cdot (-1)) = \frac{1}{8 \cdot (-1) + n} \cdot (-7 \cdot n + 56) |
32,887 | 151657 \cdot 27099 = \left(58^2 - 41^2\right) \cdot x = 99 \cdot 17 \cdot x |
28,490 | \sin(90 - x) = -\sin(x + 90*\left(-1\right)) = \sin(x + 90*\left(-1\right) + 180) = \sin(90 + x) |
8,585 | b\cdot h = 1/(b\cdot h) = 1/\left(h\cdot b\right) = h\cdot b |
-11,964 | \dfrac{4}{15} = \dfrac{r}{20 \pi} \cdot 20 \pi = r |
27,123 | y^{1/4}\cdot y^4 = y^{\tfrac14 + 4} = y^{17/4} |
27,225 | 2 \cdot 16 + 3 \cdot (-1) = 29 |
10,650 | V = x^3 \Rightarrow V^{\frac13} = x |
-7,290 | 1/2 = 3/4*2/3 |
-11,542 | -12 + i \cdot 20 = 4 + 16 \cdot (-1) + 20 \cdot i |
-10,948 | \frac{85}{5} = 17 |
-27,348 | 0 = z^2 - 29\cdot z + 198 = (z + 11\cdot (-1))\cdot (z + 18\cdot (-1)) |
28,178 | (z^2 + 1) \cdot z \cdot 3 - z^2 \cdot 2 - z \cdot 2 + 5 \cdot (-1) = 5 \cdot (-1) + z \cdot z \cdot z \cdot 3 - z^2 \cdot 2 + z |
-3,761 | \frac{m^4}{m^4}\cdot 35/15 = \frac{m^4\cdot 35}{15 m^4} |
5,418 | \frac{\mathrm{d}}{\mathrm{d}z} \left(\ln(z)\cdot z\right) = \ln(z) + 1 |
-20,231 | \frac{1}{-18}*(2 + a*2) = \frac{1}{-9}*(1 + a)*\dfrac{2}{2} |
23,751 | \binom{r + (-1)}{k + (-1)} = \binom{\left(-1\right) + r - k + k}{(-1) + k} |
10,008 | 546 = -(-1109*4 + 4999) + 1109 |
1,156 | 1.6^{m + 2\cdot (-1)} + 1.6^{2\cdot (-1) + m} = 1.6^{m + 2\cdot (-1)}\cdot 2 |
115 | 16/49 = \dfrac{1}{49}34 - \frac{18}{49} |
29,217 | (7*x^2 + 1)*(x^2 + x + 1) = 7*x^4 + 7*x^3 + 7*x^2 + x * x + x + 1 = 7*x^4 + 7*x^3 + 8*x^2 + 1 |
22,792 | \cos^3{z} = (1 - \sin^2{z}) \cdot \cos{z} |
-10,420 | -\frac{6}{a \cdot 10 + 6 \cdot \left(-1\right)} \cdot 2/2 = -\dfrac{1}{20 \cdot a + 12 \cdot \left(-1\right)} \cdot 12 |
-12,705 | 42 = \dfrac{84}{2} |
16,232 | a = a + b + (-1) > a + b + 2*(-1) |
-27,662 | d/dz e^{-z} = -\dfrac{1}{e^z} |
9,610 | \left(a + b\cdot i\right)\cdot (a - b\cdot i) = a^2 - b \cdot b\cdot i^2 = a^2 + b^2 |
24,053 | (3 - 5^{1/2})^{1/2} = \left(10^{1/2} - 2^{1/2}\right)/2 |
-18,298 | \frac{q \cdot q + q\cdot 5 + 6}{q \cdot q + 2\cdot q} = \frac{1}{q\cdot \left(q + 2\right)}\cdot \left(2 + q\right)\cdot (3 + q) |
-1,619 | 11/6 \pi + \frac{23}{12} \pi = 15/4 \pi |
6,187 | 9 \cdot (g + 1) = 9 \cdot g + g + b + c = 10 \cdot g + b + c |
3,763 | 2/7 = 4/6\cdot \frac17\cdot 3 |
9,906 | 125/5 \cdot (5 + 1 + 2 + 3 + 4) \cdot 111 = 41625 |
4,298 | h + a = 0 \Rightarrow h = -a |
-4,867 | 0.65/1000 = \dfrac{1}{1000}\cdot 0.65 |
39,134 | q = q/3 \cdot 3 |
-6,293 | \frac{1}{(9 + n)\cdot 5} = \frac{1}{45 + n\cdot 5} |
32,288 | x - (-1) + M = x - M + 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.