id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
6,170 | \sin(\operatorname{atan}\left(z\right)) = \dfrac{z}{\sqrt{z \cdot z + 1}} |
2,960 | -(2*(-1) - \sqrt{5}) = 2 + \sqrt{5} |
-15,531 | \frac{1}{n^{10} \cdot \frac{n^{20}}{z^{10}}} = \dfrac{\dfrac{1}{n^{10}}}{\frac{1}{z^{10}}} \cdot \frac{1}{n^{20}} = \frac{z^{10}}{n^{30}} = \frac{1}{n^{30}} \cdot z^{10} |
1,936 | x + 1 = \frac{3}{2} \cdot \pi + \cos(\frac{3}{2} \cdot \pi) \Rightarrow 2 \cdot (-1) + \pi \cdot 3/2 = x |
13,335 | 10 = 5\cdot 2 = 5\cdot (3 + \left(-1\right)) = 5\cdot (\left(3^4\right)^{1/4} + (-1)) |
20,374 | \cos(\pi - r) = -\cos{r}\cdot \sin(\pi - r) = \sin{r} |
26,139 | y^2 + \delta\cdot y\cdot 2 + \delta^2 = (\delta + y)^2 |
-27,498 | 5*7aa = 35 a^2 |
5,873 | 2^{f + b} = 2^b\cdot 2^f |
6,154 | fz^{(-1) + f} = \frac{\partial}{\partial z} z^f |
-23,857 | 7 + 5\cdot 2 = 7 + 10 = 17 |
-18,935 | 31/36 = A_s/(81*\pi)*81*\pi = A_s |
-511 | (e^{\frac{i*\pi*11}{12}*1})^7 = e^{7*\frac{\pi*i*11}{12}} |
-12,064 | 7/9 = \dfrac{s}{14 \pi} \cdot 14 \pi = s |
-20,648 | -\frac{1}{-60\cdot s + 24}\cdot 48 = \frac66\cdot (-\frac{8}{4 - 10\cdot s}) |
-4,494 | y^2 + 2*y + 3*\left(-1\right) = \left(y + 3\right)*((-1) + y) |
13,135 | -(-y)^{m + 1} = -(-1)^{m + 1}*y^{m + 1} = (-1)^{m + 2}*y^{m + 1} |
18,177 | H_x \lt G_x \lt G\Longrightarrow \frac{1}{G_x}G \frac{1}{H_x}G_x = G/(H_x) |
-20,068 | ((-5)*r)/(r*\left(-5\right))*9/4 = \left((-45)*r\right)/(\left(-20\right)*r) |
-22,993 | \frac{21}{27} = \frac{7\cdot 3}{9\cdot 3} |
48,924 | 150 = 6 \cdot 6 + 114 |
18,569 | \dfrac{1}{6! \cdot 2!} 8! = 28 |
34,842 | 35\cdot \left(3 + 6\right) = 315 |
28,111 | \tfrac{2^{1/3}}{2} = 2^{-\frac{2}{3}} |
442 | \left(z + 2 \cdot (-1)\right)^2 = 4 + z^2 - 4 \cdot z |
24,583 | \left(1/2 + 1\right) \left(1 - 1/2\right) = 1 - \frac14 |
31,640 | \left(y \cdot y = z \implies \sqrt{y^2} = \sqrt{z}\right) \implies \sqrt{z} = |y| |
-10,043 | -\frac12 = -4/8 |
23,781 | \binom{100}{3} = \frac{100!}{97!*3!} = 161700 |
35,214 | -\dfrac{\pi}{8} = \frac{1}{8}*((-1)*\pi) |
34,643 | p + m/n = (pn + m)/n |
2,927 | c^3 = -2\cdot c + (-1) = c + 2 |
-25,098 | 8 \cdot \tan(y \cdot 4) \cdot \sec^2(y \cdot 4) = d/dy \sec^2(4 \cdot y) |
-4,683 | \dfrac{-y + 18\cdot (-1)}{y^2 + y + 6\cdot (-1)} = \dfrac{3}{3 + y} - \tfrac{4}{2\cdot (-1) + y} |
-7,927 | \frac{-4\cdot i - 8}{-2 + 4\cdot i}\cdot \frac{-2 - 4\cdot i}{-4\cdot i - 2} = \frac{1}{i\cdot 4 - 2}\cdot \left(-8 - 4\cdot i\right) |
31,527 | (h_b - h_t) \cdot p \cdot g \cdot s^2 = s^2 \cdot (-h_t + h_b) \cdot g \cdot p |
950 | 11 - k \cdot 4 = 3\Longrightarrow 2 = k |
-8,011 | (20 - 25 i - 16 i + 20 \left(-1\right))/41 = (0 - 41 i)/41 = -i |
-10,419 | \frac{200 (-1) + n*20}{20 n + 20} = \frac{1}{20} 20 \frac{1}{1 + n} \left(n + 10 (-1)\right) |
36,007 | \frac{15}{16} + \frac{1}{64}\cdot 3 = \frac{63}{64} = 1 - \frac{1}{64} |
12,491 | 512 \left(-1\right) + 256 = -256 |
19,096 | \cos{2t} = 1 - 2\sin^2{t} = 2\cos^2{t} + (-1) |
10,818 | 217^{\frac13} = (1 + \frac{1}{216})^{1/3}*6 |
27,904 | 3*89*3^2*2*7 = 267*126 |
25,776 | {3 \choose 1}\cdot {2 \choose 1}\cdot {5 \choose 3} = 60 |
-11,835 | \frac{8.106}{10} = 8.106*0.1 |
20,466 | 1/\left(\frac{1}{1/\left(1/25\right)}\right) = 5^{-2\times (-(-1)\times (-1))} = 5^2 = 25 |
2,975 | \frac{8}{81} = (\frac{2}{3})^3*1/3 |
9,586 | \cos\left(x\right) = \cos(x + 2*\pi) |
24,533 | \frac{44}{2}\cdot 52\cdot 48 = 54912 |
23,099 | -B^n + Y^n = (Y - B) \left(Y^{\left(-1\right) + n} + B Y^{n + 2 (-1)} + \cdots + B^{(-1) + n}\right) |
-15,946 | 6\cdot 7/10 - 10\cdot 3/10 = 12/10 |
12,421 | 2\cdot R\cdot s^2\cdot \pi \cdot \pi = s^2\cdot \pi\cdot 2\cdot \pi\cdot R |
13,265 | \dfrac{f^{l_2}}{f^{l_1}} = f^{-l_1 + l_2} |
-2,426 | 4 \cdot 6^{1/2} - 3 \cdot 6^{1/2} = 16^{1/2} \cdot 6^{1/2} - 6^{1/2} \cdot 9^{1/2} |
6,122 | \frac{1}{A C} = 1/(A C) |
28,677 | 10000\cdot \left(1 + \frac{1}{100}\right) = 10000 + \frac{1}{100}\cdot 10000 |
15,880 | b_g*b_a = b_g*b_a |
7,418 | x^2 + 4\cdot x + 3 = (x + 1)\cdot \left(x + 3\right) |
13,022 | \frac{6!}{2!\times3!}=60 |
121 | \left(-1\right) + g \neq 0\wedge g g + (-1) = 0 \Rightarrow 0 = g + 1 |
17,478 | d \cdot g - d \cdot g \cdot d = d \cdot (-d \cdot g + g) |
-2,031 | \pi \cdot \frac74 + \pi \cdot 2/3 = \pi \cdot 29/12 |
-11,903 | \frac{9.797}{100} = 9.797 \cdot 0.01 |
26,427 | -\dfrac12 = 7 - \dfrac{15}{2} |
39,948 | 3^{\dfrac1k} = 3^{1/k} |
27,779 | \cos\left(z + y\right) = \cos{z}\cdot \cos{y} - \sin{y}\cdot \sin{z} |
5,090 | \cos(\frac{x}{2})\cdot \sin(x/2)\cdot 2 = \sin\left(x\right) |
-20,578 | \frac{9 \cdot (-1) - j}{3 \cdot (-1) + j} \cdot 4/4 = \frac{-j \cdot 4 + 36 \cdot (-1)}{4 \cdot j + 12 \cdot (-1)} |
-7,190 | \frac{5}{24} = \frac{5}{3} \cdot 1/8 |
-426 | (e^{\frac{i \pi}{4} 3})^{11} = e^{11 \cdot 3 \pi i/4} |
27,598 | -2 \cdot x^2 + (1 + x \cdot x)^2 = x^4 + 1 |
-23,422 | \frac42 \cdot 1/7 = \tfrac17 \cdot 2 |
32,852 | \dfrac{1}{(1 - z^2)^{\frac{1}{2}}} = \frac{\mathrm{d}}{\mathrm{d}z} \operatorname{asin}\left(z\right) |
15,854 | \dfrac{120*6}{200} = 3.6 |
9,882 | \cos(\pi/3) + \cos(2/3\cdot \pi) = 0 |
8,446 | f = \left\{2, f, 1, \dots\right\} |
-9,042 | 54.7\% = \dfrac{54.7}{100} |
757 | i^{\frac{1}{2}} \cdot i^{\frac{1}{2}} = i = 0 + i = \left(h + bi\right)^2 = h^2 + 2hbi + b^2 i^2 = h^2 - b^2 + 2hb i |
26,670 | \frac{1}{1 - \frac{t}{2}} \cdot (1 + t/2) = \dfrac{2}{-t/2 + 1} + (-1) |
42,923 | 31\cdot 109 = 3379 |
-3,658 | 27 = 3\cdot 3\cdot 3 |
32,240 | \frac{dx}{dx} = \dfrac{1}{1 - x}\cdot x - x = \frac{x^2}{1 - x} |
-6,442 | \dfrac{5 \cdot b}{b^2 - 13 \cdot b + 36} = \frac{5 \cdot b}{(b + 4 \cdot \left(-1\right)) \cdot (b + 9 \cdot (-1))} |
6,745 | (1/3)^2 + \left(\frac{2}{3}\right)^2 = \frac19 5 < 1 + 1 |
10,761 | 0 = 1 - P(A) + P(B) - P(A) \cdot P(B) = (1 - P(A)) \cdot (1 - P\left(B\right)) |
-10,299 | -\frac{1}{15 r + 15 (-1)}5 = 5/5 (-\frac{1}{3\left(-1\right) + 3r}) |
-3,026 | 13^{1/2} = 13^{1/2}\times (3 + 2\times \left(-1\right)) |
22,478 | \frac{1}{4!} \cdot (6 + 1)! = 210 |
3,523 | \dfrac{M!}{(M + (-1))!} = M |
-22,208 | 18 + x^2 - x*9 = (x + 3 \left(-1\right)) (x + 6 (-1)) |
25,392 | \left(2\cdot m + 2\right)! = (2\cdot m + 2)\cdot (2\cdot m + 1)\cdot \left(2\cdot m\right)! |
-16,418 | 5 \sqrt{208} = 5 \sqrt{16\cdot 13} |
-7,158 | \dfrac{3}{5} = \tfrac45\cdot \dfrac34 |
19,604 | (k + x) \cdot w = k \cdot w + w \cdot x |
-22,480 | (\frac{1}{81})^{\frac12} = 81^{-\frac{1}{2}} |
-4,272 | \frac{5 / 6}{z^3}\cdot 1 = \frac{5}{6\cdot z^3} |
6,096 | x/x = x \cdot \frac{1}{x} \cdot 1 = (\frac{x}{x}) \cdot (\frac{x}{x}) |
23,033 | (z^2 + y^2) (1 - \tfrac{y}{z}) = (1 - \tfrac{y}{z}) (\sqrt{y^2 + z^2})^2 |
-4,701 | \tfrac{16 \cdot (-1) - z \cdot 6}{6 + z \cdot z + z \cdot 5} = -\frac{1}{2 + z} \cdot 4 - \frac{2}{z + 3} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.