id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
32,702 | 0 = -2^0 + 3^0 |
-10,468 | 10/10*\left(-\frac{6}{5 + 5*k}\right) = -\dfrac{1}{50*k + 50}*60 |
16,055 | \int 1 \cdot 2 \cdot \pi \cdot x\,dx = 2 \cdot \pi \cdot \frac{x^2}{2} = \pi \cdot x^2 |
52,877 | \frac{{40 \choose 3}}{{52 \choose 3}} \cdot {12 \choose 0} = \dfrac{{40 \choose 3}}{{52 \choose 3}} |
12,021 | 1 + \sin{2 x} = t^2 \Rightarrow \sin{2 x} = t^2 + (-1) |
2,799 | 20/132 = 5/12\cdot 4/11 |
-19,716 | 70/8 = \dfrac{7*10}{8} |
13,171 | \left((-1) + n\right) (n + 1) = n^2 + (-1) |
25,389 | 1/3 + 1/3 + \frac{1}{3} = 1 |
11,407 | i + 3\cdot (-i\cdot 7) = -i\cdot 20 |
2,852 | y^2 + 5*y + 2 = (y + 2)^2 = y^2 + 4*y + 4 rightarrow y = 2 |
-18,383 | \frac{1}{16 + x \cdot x - 8\cdot x}\cdot (x^2 - 4\cdot x) = \dfrac{x\cdot (x + 4\cdot \left(-1\right))}{(x + 4\cdot (-1))\cdot (x + 4\cdot (-1))} |
19,553 | \sin(-\pi \cdot y) \cdot \left(-y\right) = y \cdot \sin(y \cdot \pi) |
7,711 | a = 2\cdot x^2 - 5\cdot x + 2\cdot (-1) \Rightarrow x^2\cdot 2 - 5\cdot x + 2\cdot (-1) - a = 0 |
21,506 | n + 2 \times (-1) + (3 \times \left(-1\right) + n) \times 2 + (4 \times (-1) + n) \times (3 \times (-1) + n) = \left(2 \times (-1) + n\right)^2 |
14,178 | \dfrac{d_2}{d_1} = d_1 \cdot d_2 = d_2 \cdot d_1 = \frac{1}{d_1} \cdot d_2 |
-9,441 | 40 \cdot y = 2 \cdot 2 \cdot 2 \cdot 5 \cdot y |
-16,816 | -7 = -7 \cdot \left(-2 \cdot t\right) - -56 = 14 \cdot t + 56 = 14 \cdot t + 56 |
-22,431 | 64^{\dfrac{2}{3}} = (64^{1/3})^2 = 4 * 4 = 4*4 = 16 |
-4,490 | \dfrac{5}{y + 3} - \frac{4}{y + (-1)} = \frac{y + 17 \cdot (-1)}{3 \cdot (-1) + y^2 + y \cdot 2} |
48,017 | \frac{1}{(v - y)^2} = \frac{\partial}{\partial v} \frac{1}{v - y} = \dfrac{1}{y^2} + \dfrac{1}{y^3}*2*v + \frac{3*v^2}{y^4} |
-17,676 | 11 \cdot \left(-1\right) + 34 = 23 |
4,923 | (1 - \cos{\tau})/\sin{\tau} = \frac{2 \cdot \sin^2{\tfrac{\tau}{2}}}{2 \cdot \sin{\tau/2} \cdot \cos{\tau/2}} = \tan{\tau/2} |
11,993 | (h + a)^2 = a^2 + h^2 + a\cdot h\cdot 2 |
6,338 | \frac{1}{2\cdot 2} + \frac{1}{2} = \frac{3}{4} |
24,929 | Z_q = \frac{\partial}{\partial q} Z_q |
38,607 | \frac{1}{-d + 1} = 1 + d + d^2 + d^2 \cdot d + d^4 + \dots |
20,523 | \frac{7}{4}\cdot \pi = \tfrac{3\cdot \pi}{2}\cdot 1 + \pi/4 |
-9,861 | -\dfrac{1}{100} 47 = 0.01 \left(-47\right) |
-22,710 | 28/49 = 4*7/(7*7) |
-22,211 | (x + 3) \cdot (x + 7) = 21 + x^2 + 10 \cdot x |
24,733 | z^4 + 1 = z^4 + 2 z z + 1 - 2 z^2 |
13,024 | 1/4 + 3*3/4 = 2.5 |
-15,523 | \dfrac{(\frac{1}{x})^5}{\frac{1}{\frac{1}{r^4} \cdot \frac{1}{x^4}}} = \frac{1}{x^5 \cdot r^4 \cdot x^4} |
13,220 | \left(4 < 17^{1 / 2} \implies -1 - 17^{1 / 2} < -5\right) \implies -1 > \left(-17^{\dfrac{1}{2}} - 1\right)/4 |
17,069 | p^2 \cdot 3 = p^2 + 2 \cdot p \cdot p |
-18,504 | -\frac{1}{28} \cdot 53 = -53/28 |
-26,056 | -h^2 + d^2 = (d - h) \cdot (d + h) |
11,868 | -\pi\cdot (-4) - 2\cdot \pi = 2\cdot \pi |
-26,671 | \left(z + 3\right)\cdot (3\cdot (-1) - z\cdot 7) = -7\cdot z^2 - z\cdot 24 + 9\cdot (-1) |
-11,921 | 1.47\cdot 0.001 = \tfrac{1.47}{1000} |
2,005 | \cos{x} = \left(e^{i x} + e^{-i x}\right)/2 = \cosh{i x} |
30,259 | \sqrt{A \cdot Z} = Z rightarrow Z = 0\text{ or }A = Z |
-15,843 | \frac{5}{10} - 5\cdot \dfrac{9}{10} = -\frac{1}{10}\cdot 40 |
13,599 | ((-1) + d) \cdot ((-1) + d) = 1 + d \cdot d - d\cdot 2 |
41,896 | \frac{1}{3 + v^2 + v} = \frac{1}{3 + v^2 + v} |
-22,388 | 1 + 3\cdot (-1) = -2 |
17,811 | k + 1 + (1 + k \cdot k \cdot k + 3\cdot k^2 + k\cdot 3)\cdot 2 = 2\cdot k^3 + k + 3\cdot \left(2\cdot k^2 + k\cdot 2 + 1\right) |
14,632 | \left|{A \cdot Z}\right| = \left|{A \cdot Z}\right| |
26,163 | 15\cdot 200 = 3000 |
-7,728 | (-5 + 5\cdot i)/5 = -5/5 + \frac55\cdot i |
-21,043 | 6/12 = \dfrac133\cdot 2/4 |
23,082 | x \cdot 2 = x + \sqrt{-2} + x - \sqrt{-2} |
23,626 | 2000 = (60\cdot (-1) + 90)^2 + (60\cdot (-1) + 30)^2 + (50 + 60\cdot \left(-1\right))^2 + \left(60\cdot (-1) + 70\right)^2 |
6,891 | (H \cdot H^Q)^Q = (H^Q)^Q \cdot H^Q = H \cdot H^Q |
-1,611 | 7/6 \pi + \frac{1}{12}17 \pi = \pi\cdot 31/12 |
-20,741 | \tfrac{x + 8 \cdot (-1)}{8 \cdot (-1) + x} \cdot (-3/1) = \frac{1}{8 \cdot (-1) + x} \cdot (-3 \cdot x + 24) |
13,348 | (g + b + 4\cdot h) \cdot (g + b + 4\cdot h) + (g + b)^2 = (b + g)^2 + (g + 2\cdot h + b + h\cdot 2)^2 |
-1,714 | \frac{5}{6} \cdot \pi = -5/12 \cdot \pi + 5/4 \cdot \pi |
9,926 | \sin^4\left(x\right) \cdot \cos^2(x) = \sin^4(x) \cdot (1 - \sin^2(x)) = \sin^4(x) - \sin^6(x) |
32,915 | x^n + (-1) = \left(x + (-1)\right) \cdot (x^{n + (-1)} + x^{n + 2 \cdot (-1)} + \cdots + x + 1) |
-22,173 | \frac{1}{18} \cdot 24 = \tfrac{4}{3} |
20,892 | 1 + 2^{555} + 5\cdot 2^{444} + 10\cdot 2^{333} + 10\cdot 2^{222} + 5\cdot 2^{111} = \left(1 + 2^{111}\right)^5 |
35,876 | 3/1 = 3 \cdot (-1) + x rightarrow 6 = x |
-19,738 | 35/8 = \frac{1}{8}35 |
2,689 | 2\cdot \frac{1}{8}\cdot 1 / 64 = \dfrac{2}{512} |
-13,437 | \frac{1}{8 + 6\times (-1)}\times 10 = 10/2 = \dfrac{10}{2} = 5 |
31,856 | (g + b)^n = g + b = g^n + b^n |
22,472 | \sum_{i=1}^k i^3 = (\sum_{i=1}^k i)^2 |
304 | 2 = 49\cdot y^2 + 3\cdot y^2 + 9\cdot y^2 + (-7\cdot y + y + 3\cdot y)^2 = 70\cdot y \cdot y |
54,838 | 0 = \tfrac{1}{\infty} |
19,154 | \frac{36 + 4}{36 + 4 + 3 + 3} = \frac{1}{46} \cdot 40 = \tfrac{20}{23} |
-19,804 | -0.35 = -\dfrac{1}{40} \cdot 14 |
22,225 | 2 \cdot 6 + 2 \cdot 8 = 28 |
13,873 | e^{\frac{1}{x}} = 1 + 1/x + \frac{1}{2 \cdot x \cdot x} + ... \gt \frac{1}{2 \cdot x^2} |
52,729 | 104 = 34\times 3 + 2 |
26,199 | \frac{j^2}{j + y} = j - y + \frac{y^2}{j + y} |
-5,038 | 4.68 \cdot 10 = \dfrac{4.68}{1000} \cdot 10 = 4.68/100 |
2,746 | \dfrac{2}{n} + (-1) \leq -1 rightarrow 2/n \leq 0 |
19,883 | \mathbb{E}[Y_1\cdot Y_2^2] = \mathbb{E}[Y_1]\cdot \mathbb{E}[Y_2 \cdot Y_2] |
10,873 | 9/25 = \frac{3}{5}\cdot \dfrac35 |
5,963 | x^3\cdot N = 8^3 \Rightarrow 8\cdot 8 \cdot 8 = N\cdot x^2\cdot x |
-20,580 | \frac{1}{2 n + 2 \left(-1\right)} (n + 3 (-1))*5/5 = \frac{1}{n*10 + 10 (-1)} (5 n + 15 (-1)) |
30,613 | 2^{i + 1} + 2(-1) = 2^1\cdot 2^i + 2(-1) = 2\cdot (2^i + \left(-1\right)) |
-13,453 | \frac{1}{3 + (-1)} \cdot 6 = 6/2 = \frac{6}{2} = 3 |
21,750 | \left(\alpha + (-1)\right) \cdot \left(\alpha + 1\right) = (-1) + \alpha^2 |
-22,366 | k^2 - k \cdot 3 + 18 \cdot (-1) = \left(3 + k\right) \cdot (k + 6 \cdot \left(-1\right)) |
5,361 | 2 = 2 + 0\cdot 7 |
21,250 | -d \cdot 16 + a^2 \cdot 4 + 4d^2 + 64 - 4da - 16 a = (-d + a)^2 \cdot 3 + \left(8(-1) + a + d\right)^2 |
8,768 | -(1 + 6*n_2) + 6*n_1 + 1 = 2*(n_1*3 - n_2*3) |
-17,753 | 52\times (-1) + 79 = 27 |
7,629 | \left(-1\right) + x = \frac12\cdot (x + (-1)) + ((-1) + x)/2 |
1,409 | -n^{1/2} + (n + 1)^{1/2} = \frac{1}{(n + 1)^{1/2} + n^{1/2}} |
-25,717 | \frac{\mathrm{d}}{\mathrm{d}t} \left(3 \times e^{2 \times t}\right) = 2 \times 3 \times e^{2 \times t} = 6 \times e^{2 \times t} |
15,832 | (b + (-1)) (b^2 + b + 1) = b^3 + (-1) |
-20,223 | \frac{72}{72\cdot \left(-1\right) - 45\cdot x} = \dfrac{9}{9}\cdot \frac{8}{-x\cdot 5 + 8\cdot (-1)} |
-3,726 | \tfrac{40\cdot q^5}{5\cdot q^4} = \frac{q^5}{q^4}\cdot 40/5 |
16,251 | (z^3 + \eta * \eta * \eta)*(\eta^6 - z^3*\eta * \eta^2 + z^6) = z^9 + \eta^9 |
43,921 | 4^n = 2^n*2^n \geq (1 + n)^2 |
19,657 | \mathbb{N} = \left\{\dots, 4, 2, 3, 0, 1\right\} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.