id
int64
-30,985
55.9k
text
stringlengths
5
437k
48,420
5\cdot 1/6/6 + \frac{1/6}{6}\cdot 4 + \dfrac{\frac{1}{6}\cdot 3}{6} + \frac{\frac{1}{6}}{6}\cdot 2 + \dfrac{1}{6\cdot 6} + 0\cdot \frac{1}{6}/6 = \frac{1}{6}\cdot \left(\frac06 + \frac{5}{6} + 4/6 + 3/6 + 2/6 + \frac{1}{6}\right)
2,267
\cos{a\cdot 2} = -\sin^2{a} + \cos^2{a}
417
|c|\cdot |a| = |a\cdot c|
-4,322
\frac{y}{y^3} = \dfrac{1}{yy y}y = \frac{1}{y^2}
2,024
1 + m * m * m + m^2 + 2m = m^3 + (1 + m)^2
50,470
\cot{z} - \cot{y} = \cos{z}/\sin{z} - \cos{y}/\sin{y} = \dfrac{1}{\sin{z} \cdot \sin{y}} \cdot (\cos{z} \cdot \sin{y} - \sin{z} \cdot \cos{y}) = \frac{\sin(y - z)}{\sin{z} \cdot \sin{y}}
29,813
((k + 1)\cdot 5 + \left(k + 1\right)^3)/3 = (k^3 + k^2\cdot 3 + k\cdot 8 + 6)/3
7,086
\left(3 \cdot (-1) + x\right) \cdot (x + 1) = 3 \cdot (-1) + x^2 - 2 \cdot x
25,859
(x^2)^a = (\frac{1}{x})^a = x^{a + \left(-1\right)}
21,063
\frac{16}{3} = 1/2*6 + \frac{1}{3}*5 + 1/6*4
37,562
i\binom{F}{i} = \binom{(-1) + F}{i + (-1)} F
21,621
c_m = \dfrac{c_m m}{m}1
-2,771
\sqrt{5}\cdot (4 + 1) = 5\cdot \sqrt{5}
5,023
\left(n + 2 \cdot (-1)\right) \cdot (n + 2) = 4 \cdot (-1) + n^2
28,517
\dfrac{1}{5 + 7 \cdot (-1)} \cdot (-2 + 4 \cdot (-1)) = -\frac{1}{-2} \cdot 6 = 3
-20,513
-\frac{1}{1}*2*j*5/(j*5) = (j*(-10))/(j*5)
12,049
-c \neq c \Rightarrow 0*(-1) + c \neq -c + 0
26,729
(1 + s)\cdot (s + (-1)) + 1 = s^2
46,929
5 * 5 * 5 = 5^2*5
48,883
\frac{\sin b}{\cos b}=\frac{3}{4} \Rightarrow \frac{9}{16}\cos^2 b+\cos^2b=1 \Rightarrow \cos b=\frac{4}{5} \Rightarrow \sin b=\frac{3}{5}
-10,528
\dfrac{9}{3\left(-1\right) + k}*4/4 = \frac{1}{4k + 12 \left(-1\right)}36
11,506
\sqrt{2}\times 2/3 = \tfrac{\sqrt{2}\times 2}{3}
1,712
2 \cdot (-1) + m - e + m - w = m \cdot 2 + 2 \cdot (-1) - e - w
33,707
\sin(x*2) = \cos(x) \sin(x)*2
10,206
u^2 = x^2 \Rightarrow u = x
20,806
c + b = ( c, b)*( 1, 1) \leq (c * c + b^2)^{1/2}
11,292
(-1) + 3 + 1 + m + (-1) + m = 2*m + 2
15,438
\frac{1}{n! \left(n + 2\right)} = \frac{1}{(n + 2)!}(n + 2 + \left(-1\right)) = \frac{1}{\left(n + 1\right)!} - \frac{1}{(n + 2)!}
-5,863
\dfrac{4}{(k + 7 \cdot (-1)) \cdot (k + 10 \cdot (-1))} \cdot k = \dfrac{4 \cdot k}{k^2 - k \cdot 17 + 70}
18,353
-\left(2 + z\right)\cdot ((-1) + z)^2 = 2\cdot (-1) + 3\cdot z - z^3
-10,802
\dfrac{144}{12} = 12
6,135
8 + x^2 + x \cdot 6 = \left(x + 4\right) \cdot (x + 2)
-15,100
\tfrac{1}{\frac{1}{i^{16} \cdot \frac{1}{\xi^4}}} \cdot i^4 = \frac{i^4}{\frac{1}{i^{16}} \cdot \xi^4}
14,084
\sin{x} = \sin((2\cdot n + 1)\cdot \pi - x) = \sin(x + 2\cdot n\cdot \pi)
33,118
\left. \frac{\partial}{\partial i} (\Im{(Z \cdot Z)} \cdot x) \right|_{\substack{ i=i }} = \left. \frac{\partial}{\partial i} (\Im{(Z)} \cdot x) \right|_{\substack{ i=i }}
11,882
8/11 = 1/2 + 1/4 - \frac{1}{44}
31,090
b \cdot 2 + h - b = h + b
15,780
\sigma*A = \sigma*A
49,425
148894375444481 = 1 + 2^{15} \times 4543895735
13,132
(x\cdot z + w\cdot y)^2 + \left(w\cdot x - z\cdot y\right) \cdot \left(w\cdot x - z\cdot y\right) = (z^2 + w^2)\cdot \left(y^2 + x \cdot x\right)
1,516
(x + 2)^{\frac{1}{2}} = (4 + x + 2\times (-1))^{\frac12} = 2\times (1 + (x + 2\times (-1))/4)^{\frac{1}{2}}
24,987
z + 0 \cdot (-1) = z + 0 \cdot \left(-1\right) + 0
-5,207
1.56 \cdot 10 = \tfrac{10}{1000} \cdot 1.56 = 1.56/100
14,674
y^f*y^a = y^{f + a}
10,623
(1/2 - i)^2 + 2i = (1/2 + i)^2
14,305
1 - \tfrac{1}{1 - B}\cdot \left(1 - A\right) = \frac{1}{1 - B}\cdot (1 - B - 1 - A) = \dfrac{A - B}{1 - B}
10,960
(1 - \sqrt{x})\cdot (1 + \sqrt{x}) = -x + 1
22,695
z = \dfrac1z*z^2
-2,257
-3/18 + \frac{5}{18} = 2/18
18,787
0 \leq 3\left(-1\right) + x \cdot 3 \Rightarrow x \geq 1
-15,468
\dfrac{(\frac{1}{x^3})^2}{\frac{1}{1/x \frac{1}{k^2}}} = \dfrac{1}{k^2 x x^6}
32,079
... ... = ... \cdot ...
10,714
F^{24} = F^{16}\cdot F^8
4,519
\sin\left(90\cdot (-1) + \alpha\right) = -\sin(90)\cdot \cos\left(\alpha\right) + \sin(\alpha)\cdot \cos(90)
8,279
\sin(b\times F) = \sin(b\times F)
8,220
\frac{26}{50} \cdot \dfrac{1}{51} \cdot 39 = \frac{169}{425}
17,402
1601 \cdot 1601 - 79\cdot 1601 + 1601 = 1601\cdot \left(1601 + 79\cdot \left(-1\right) + 1\right) = 1601\cdot 1523
10,695
\tan^2{w} = (-s + 1)/s \Rightarrow s = \cos^2{w}
34,341
1 - \frac{1}{(y^{22})!} + \frac{1}{(y^{44})!} - \dotsm = \cos\left(1/y\right)
28,076
2*|z| = d/dz (z*|z|)
11,037
(-1) \cdot h \cdot 0 + h \cdot 0 = h \cdot 0 + h \cdot 0 - h \cdot 0
45,635
\sqrt{6 - \sqrt{20}} = \sqrt{1} - \sqrt{5} \lt 0
-29,369
(5 \cdot z + 1) \cdot (5 \cdot z + (-1)) = (5 \cdot z)^2 - 1^2 = 25 \cdot z^2 + (-1)
-3,245
\left(5 + 3*(-1) + (-1)\right)*\sqrt{11} = \sqrt{11}
38,843
7*14 \dotsm*7l = 7*7*2 \dotsm*7l = 7^l*1*2 \dotsm l = 7^l l!
30,834
\tan^{-1}(-\infty) = -\frac{\pi}{2}
-18,942
\dfrac13 = \frac{C_t}{16\cdot \pi}\cdot 16\cdot \pi = C_t
13,281
3 + (6 + \frac{1}{6 + \frac{5^2}{6 + \dots}} \cdot 3^2)^{-1} = π
15,721
x^4 = (x \times x)^2
5,498
2/3 t = t - t/3
20,735
(a - b) \times (b^2 + a^2 + a \times b) = a^3 - b^3
6,123
1 + \frac{1}{1 - \delta} \cdot \delta = \frac{1}{-\delta + 1}
20,050
\cos\left(3 \cdot \left(x + \pi/3\right)\right) = \cos(2 \cdot \pi + 3 \cdot x) = \cos(3 \cdot x)
18,522
\left(x^2\right)^2 = x \cdot x \cdot x^2 = x \cdot x \cdot x \cdot x = x^4 = x^{2 \cdot 2}
-13,941
\frac{35}{1 + 6} = \frac{35}{7} = \tfrac{35}{7} = 5
21,552
1 + 2 + 3 + \dots + r = \left(r + 1\right) \cdot r/2
-20,224
-\dfrac{7}{2} \frac{1}{1 + y} (y + 1) = \frac{-7 y + 7 \left(-1\right)}{2 + y*2}
-6,133
\frac{12}{4*(k + 5*(-1))*(k + 9*(-1))} = \frac44*\frac{1}{(k + 9*(-1))*(k + 5*\left(-1\right))}*3
17,781
\dfrac43 = -8/3 + 4
8,583
\dfrac{1}{(-1)^k} = \dfrac{1}{(-1)^{k*2}}*(-1)^k
33,352
\binom{6}{2}*4! = \dfrac{6!}{2!*4!}*4! = \frac{6!}{2!} = 360
49,769
1 - \left(1 - 1/365\right)^{80000} = 1 - (\frac{1}{365} \cdot 364)^{80000} \approx 1 - 4.8/1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
38,374
0 = 162\cdot (-1) + 48 + 24 + 72\cdot (-1) + 162
26,434
{4!\over2!}=12
4,730
\frac{1}{b \cdot d} \cdot (-b \cdot c + f \cdot d) = -\frac{c}{d} + f/b
17,900
\left(a^T \cdot U \cdot b\right)^T = b^T \cdot U^T \cdot a = b^T \cdot U \cdot a
-5,307
60.0 \cdot 10^3 = 10^{2 + 1} \cdot 60
18,672
x'*y + y*x' = x'*y
-1,140
\frac{1}{3 \cdot 1/4} \cdot (\dfrac19 \cdot (-1)) = -1/9 \cdot \dfrac43
6,909
2 \cdot h \cdot y \cdot z + 1 = h \cdot y \cdot z + h \cdot y + y \cdot z + z \cdot h + h + y + z + 1 = (h + 1) \cdot (y + 1) \cdot (z + 1)
14,483
\cot{H} = \dfrac{\cos{H}}{\sin{H}}
24,583
1 - \frac14 = (\frac12 + 1)\cdot (1 - \frac{1}{2})
28,656
1 + z^2 + z = \frac{3}{4} + \left(1/2 + z\right) \cdot \left(1/2 + z\right)
9,823
1 + 4*3^{\frac{1}{8}*9}*\lambda - 4*3^{1/8}*\lambda = 0 \implies 8*3^{\frac18}*\lambda = -1
-6,440
\frac{(8 + q)\cdot 4 + 6\cdot (4 + q) + 16\cdot \left(-1\right)}{(4 + q)\cdot (8 + q)\cdot 8} = \frac{4}{8\cdot (8 + q)\cdot \left(q + 4\right)}\cdot \left(8 + q\right) + \frac{6\cdot (q + 4)}{8\cdot (q + 4)\cdot (q + 8)} - \tfrac{16}{8\cdot (4 + q)\cdot (8 + q)}
8,005
(-c + a) \cdot \left(b - c\right) = b \cdot a + c \cdot c - \left(a + b\right) \cdot c
6,043
-(1 + m^2 + 3\cdot m) + d^2 + d\cdot 3 + 1 = \left(d + m + 3\right)\cdot \left(d - m\right)
-1,612
-\pi\cdot \frac{11}{12} + \pi\cdot 4/3 = \pi\cdot 5/12
-11,628
i - 4 + 3 \cdot \left(-1\right) = -7 + i
31,549
y^3 + y^2 - 10 y + 8 = (4 + y) (\left(-1\right) + y) (2 (-1) + y)