id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
-21,594 | \sin(\pi*\frac{1}{6}*11) = -0.5 |
18,339 | 1/(t\cdot d) = \frac{1}{t\cdot d} |
-15,928 | -\dfrac{83}{10} = -10 \cdot \frac{9}{10} + \frac{7}{10} |
17,835 | 1 + kx + x = 1 + \left(k + 1\right) x \leq (1 + x)^k + x |
50,749 | \frac{5^{2013}\cdot 2^{2013}\cdot 3^{2008}}{3^{2010}\cdot 2^{2010}\cdot 5^{2012}} = 40/9 |
39,123 | (h + b)^2 = h^2 + 2hb + b^2 \geq h \cdot h + b \cdot b |
12,561 | (-a \cdot c + a^2 + b^2 + c^2 - b \cdot a - c \cdot b) \cdot (c + a + b) = -3 \cdot b \cdot c \cdot a + a^3 + b^3 + c^2 \cdot c |
17,134 | \tfrac{1}{4} = \frac{1}{2*2} |
29,264 | (1 - \sqrt{y}) \cdot (\sqrt{y} + 1) = 1 - y |
17,018 | c^2 + \frac{1}{c^2} + 1 = \left(c + 1/c\right)^2 + (-1) = (c + 1/c + 1) (c + 1/c + (-1)) |
7,846 | \sqrt{13}/2 = \sqrt{\frac{1}{1 - 5/13}\cdot 2} |
15,072 | \dfrac{4}{4!}\times 10\times 8\times 6 = 80 |
18,100 | \frac{1/9 z}{1 - -z^4/9} = \frac{z}{z^4 + 9} |
-23,205 | -\frac{1}{2}\cdot 3\cdot 8 = -12 |
23,258 | \left(2 \cdot n\right)! = 2 \cdot n \cdot \left(\left(-1\right) + 2 \cdot n\right)! |
17,876 | \left(2a \cdot a + 1\right)^2 + (-1) = 4a^4 + 4a^2 = (2a^2) \cdot (2a^2) + (2a)^2 |
-3,072 | \sqrt{54} + \sqrt{96} = \sqrt{9 \cdot 6} + \sqrt{16 \cdot 6} |
-24,856 | \frac{x}{3} - \dfrac12\cdot v = -1/2\cdot (\dfrac{x}{3} + \frac{v}{2}) + 1 = ((-1)\cdot x)/6 - \dfrac14\cdot v + 1 |
3,673 | z + 2*\left(-1\right) - y^2 + 1 = 3*(-1) + z - y * y |
37,391 | \frac{f \times t^4}{t^3 \times f} = \frac{t^5 \times f}{f \times t^4} |
6,197 | -4 = b + a \Rightarrow -4 = -b + a |
34,179 | 2^k - 2^{k + (-1)} = 2*2^{k + (-1)} - 2^{k + (-1)} = 2^{k + (-1)} (2 + (-1)) = 2^{k + (-1)} |
17,806 | \left(-a\right) \times \left(-a\right) = a^2 |
22,920 | G^C \cdot G = G \cdot G^C |
-22,375 | m^2 + 7 m + 12 = (m + 3) (m + 4) |
-9,632 | -10\% = -\dfrac{10}{100} = -\dfrac{1}{10} |
47,924 | 2 = (\left(-1\right) + 3) |
-22,196 | 35\cdot (-1) + s^2 - 2\cdot s = (s + 5)\cdot (s + 7\cdot (-1)) |
2,313 | det\left(I + XY a\right) = det\left(I + X^{\frac12} Y X^{\frac{1}{2}} a\right) |
36,807 | \dfrac{5}{12} = 15/36 |
22,922 | |H_1|*|H_2| = |H_1*H_2| |
-15,150 | \frac{1}{lg^{20} l^{10}} = \frac{1}{l*(l^2 g^4)^5} |
36,890 | \sqrt{6 + \sqrt{2}} \times \sqrt{6 - \sqrt{2}} = \sqrt{36 + 2 \times (-1)} = \sqrt{34} |
-17,806 | 73 = 65 + 8 |
5,912 | 10 \cdot 10 \cdot 10\cdot 10^3 = 10^6 |
-10,053 | -0.02 = -\frac{1}{50} |
38,521 | -1/4 + 1 + (-1) + 1/2 - 1/2 + 1/3 - 1/3 + \dfrac14 = 0 |
43,031 | 10\cdot 7 + 40 (-1) = 30 |
11,548 | r + r = (r + r)^2 = (r + r)\cdot (r + r) = r^2 + r^2 + r \cdot r + r^2 = r + r + r + r |
38,946 | 3^{10^{20}} = \ldots*8084427865522000000000000000000001 |
16,820 | \frac{1}{6} + \dfrac{1}{3} + \frac{1}{2} = 1 |
4,808 | z^2 - p^2 = (z - p)\cdot (p + z) |
15,105 | (b + x)\cdot (-x + b) = b^2 - x^2 |
10,920 | 972 = 3^5 \times 2^2 |
-1,203 | (\dfrac17*(-9))/(8*1/3) = -\frac17*9*3/8 |
4,173 | -7 \cdot 7 + 8^2 = -1^2 + 4^2 |
-8,026 | \frac{-5 - 5 \cdot i}{-5 - i \cdot 5} \cdot \frac{i \cdot 30 - 10}{-5 + i \cdot 5} = \frac{i \cdot 30 - 10}{i \cdot 5 - 5} |
-6,733 | 6/100 + \frac{1}{10} 0 = \dfrac{6}{100} + \dfrac{0}{100} |
2,151 | \left[255,391\right] = \left[136,255\right] = \emptyset = 17 \Rightarrow 17 |
28,686 | 5^2 + 10^2 = 2^2 + 11^2 |
22,669 | 53\cdot 4 = -5\cdot 2\cdot 4 + 7\cdot 9\cdot 4 |
23,330 | \frac{1}{k!\cdot (n - k)!}\cdot n! = {n \choose k} |
-25,398 | \frac{\text{d}}{\text{d}z} \left(\dfrac{\sin{z}}{z * z}\right) = \frac{1}{z^3}*(\cos{z}*z - 2*\sin{z}) |
5,520 | c = u\cdot a\cdot c + v\cdot b\cdot c = (u\cdot c + v\cdot b\cdot c/a)\cdot a |
614 | \frac{16}{0 + 1} = 9 + 7^{\frac{1}{2}} \times 7^{\frac{1}{2}} |
10,016 | 0 = \left(3\cdot 6 + 2\cdot (-1)\right)^{1/2} + 2 + 6\cdot (-1) |
9,485 | \frac{1}{n + 2}*2*4^n = \frac{2^{2*n + 1}}{n + 2} |
20,045 | -2^{6 + (-1)}\cdot 6 = -192 |
10,794 | 1/2 + A_2 = 0 \Rightarrow A_2 = -1/2 |
4,063 | h^{-f} = \dfrac{1}{h^f} |
-4,127 | \dfrac18*7 = \dfrac78 |
20,044 | 3! \cdot (3! + (-1)) \cdot ... \cdot 2 = (3!)! |
-17,835 | 50 = 74 + 24*\left(-1\right) |
8,740 | b_1*a_1 + a_2*b_2 = a_2*b_2 + b_1*a_1 |
-18,406 | \dfrac{-8\cdot y + y^2}{y^2 - y\cdot 16 + 64} = \frac{1}{(8\cdot (-1) + y)\cdot \left(y + 8\cdot (-1)\right)}\cdot y\cdot (8\cdot (-1) + y) |
-10,408 | 3/3\cdot (-\frac{3}{n + 3}) = -\frac{1}{3\cdot n + 9}\cdot 9 |
-17,212 | 4/5 = \dfrac{1}{5}4 |
4,498 | \frac{1}{\cos(x)} + \sin(x) = \frac{1}{\cos(x)}*(\sin\left(x\right)*\cos(x) + 1) |
4,314 | \frac{1}{\left(2*y + (-1)\right)^2} = \tfrac{1}{(2*(y - 1/2))^2} = \dfrac{\frac14}{(y - 1/2) * (y - 1/2)} |
4,450 | (2 \cdot n + 1) \cdot (n \cdot 3 + \left(-1\right)) = 6 \cdot n^2 + n + (-1) |
-9,057 | 17.1\% = \tfrac{17.1}{100} |
18,542 | \sin(F \cdot 2) = \sin(F) \cdot \cos(F) \cdot 2 |
2,272 | x_l - x \lt \nu \implies x_l \lt \nu + x |
9,579 | 6/27*\frac56 = \dfrac{1}{27}5 |
-20,561 | \frac31\cdot \dfrac{1}{4 - z\cdot 9}\cdot (4 - 9\cdot z) = \frac{-27\cdot z + 12}{-9\cdot z + 4} |
-11,579 | 0 + 12 + i\cdot 4 = 12 + i\cdot 4 |
48,694 | 6\cdot2^2\cdot6=144 |
-18,281 | \frac{m^2 - m \cdot 3}{12 + m^2 - m \cdot 7} = \frac{\left(3\left(-1\right) + m\right) m}{(3(-1) + m) (m + 4(-1))} |
15,481 | 1 + x^2 = (x^2\cdot 42 + 42)/42 |
-9,386 | -3*x^3 = -x*x*3*x |
31,468 | e^{-ix} = \cos(-x) + i\sin(-x) = \cos(x) - i\sin(x) |
480 | \frac{t}{s - t} + 1 = \frac{s}{-t + s} |
-27,236 | \sum_{k=1}^β \frac{(-11 + 5)^k}{k \times 6^k} \times (k + 2) = \sum_{k=1}^β \dfrac{1}{k \times 6^k} \times (-6)^k \times (k + 2) = \sum_{k=1}^β \dfrac{1}{k \times 6^k} \times (-1)^k \times 6^k \times (k + 2) = \sum_{k=1}^β \frac{(-1)^k}{k} \times (k + 2) |
-20,151 | -\frac{1}{1} 4 \frac{t*\left(-9\right)}{\left(-9\right) t} = 36 t/(t*(-9)) |
10,539 | s_j b_j = s_j b_j |
-17,208 | \dfrac{1}{\cos^2{\theta}} = \frac{1}{\cos^2{\theta}}*\sin^2{\theta} + \frac{\cos^2{\theta}}{\cos^2{\theta}} |
30,061 | e^{-2\times \lambda - \lambda} = e^{-3\times \lambda} |
8,013 | 0 = f^k = f^{k + 2\cdot (-1)}\cdot f \cdot f = f^{k + 2\cdot \left(-1\right)}\cdot f = f^{k + \left(-1\right)} |
17,640 | l^2 = (100 gl) * (100 gl) = 10000 gl^2 |
21,440 | \sin\left(\operatorname{atan}(x)\right) = \dfrac{1}{\left(x^2 + 1\right)^{1/2}} \cdot x |
16,689 | \frac{x\cdot 6 + 9(-1)}{x + (-1)} = 3\frac{1}{x + (-1)}(3(-1) + x\cdot 2) |
-18,992 | 29/45 = \dfrac{Z_s}{9*\pi}*9*\pi = Z_s |
7,084 | x^2 + 5x + 6 = (x+2)(x+3) |
-19,536 | \frac{1}{2*1/9}\frac{9}{2} = \dfrac129*9/2 |
-6,264 | \frac{\dfrac{1}{5\cdot (-1) + t}}{(9 + t)\cdot 2}\cdot (5\cdot (-1) + t) = \frac{5\cdot (-1) + t}{(t + 5\cdot \left(-1\right))\cdot (t + 9)\cdot 2} |
8,188 | 3\times (-1) + C^2 - 2\times C = (C + 1)\times \left(C + 3\times (-1)\right) |
19,405 | 4*\left(-1\right) + l^2 = (2 + l)*(l + 2*(-1)) |
-23,214 | 1 = \frac13*3 |
7,553 | 16 (-1) + x^8 = (x \cdot x + 2(-1)) (4 + x^4) (x^2 + 2) |
-13,594 | (8 + 2 - 7*6)*10 = (8 + 2 + 42*(-1))*10 = (8 - 40)*10 = \left(8 + 40*(-1)\right)*10 = (-32)*10 = (-32)*10 = -320 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.