id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
14,912 | |y| = \sqrt{y*\overline{y}} = \sqrt{\overline{y}*y} = |\overline{y}| |
-7,108 | 6/15\times 6/14 = \frac{6}{35} |
1,773 | -x \times Y = Y \times x - x \times Y - Y \times x = (Y, x) |
15,237 | \tan(\dfrac12π - x) = \frac{\cos(x)}{\sin(x)} = \dfrac{1}{\tan(x)} |
8,899 | p^4 + p^2 + p^2 + p^2 + p^2 - p^3 - p^3 - p^3 - p^3 = 4*p * p - p * p * p*4 + p^4 |
-4,202 | \tfrac{110}{44}*\frac{a^4}{a} = \dfrac{110*a^4}{a*44} |
25,315 | x! = x \cdot ((-1) + x) \cdot \left(x + 2 \cdot (-1)\right) \cdot \cdots \cdot 3 \cdot 2 |
8,324 | x = -(1 + x)*2 + x*3 + 2 |
15,126 | \left(g\cdot \frac{d}{g}\right)^l = g\cdot \frac1g\cdot d^l |
20,357 | 2\cdot 3^n = \frac{1}{3 + (-1)}\cdot (3^{n + 1} + (-1)) \Rightarrow -3^n + (-1) = 0 |
-15,927 | \dfrac{8}{10} - 8\cdot \frac{1}{10}\cdot 9 = -64/10 |
22,378 | E*A*h = A*h*E |
32,852 | \frac{d}{dz} \arcsin(z) = \dfrac{1}{(1 - z \cdot z)^{1/2}} |
28,227 | \tfrac{1}{l + 2 \cdot (-1)} \cdot (l + 1) = 1 + \frac{3}{2 \cdot (-1) + l} |
17,879 | \sin(\pi/6) = \sin(5 \times \pi/6) = 1/2 |
32,171 | \|xd\|_1 = \|xd\|_1 |
343 | a \cdot a \cdot a - f^3 = (f^2 + a^2 + a \cdot f) \cdot (a - f) |
42,230 | 41 = 67 + 22\cdot (-1) + 6\cdot \left(-1\right) + 2 |
723 | (f^2 + f \cdot h + h^2) \cdot (f - h) = f^3 - h^3 |
12,353 | -x\cdot z\cdot 2 + x^2\cdot 4 + y^2\cdot 9 + z \cdot z - 6\cdot x\cdot y - 3\cdot z\cdot y = (-z + x)^2 + \left(x - 3\cdot y\right)^2 + x^2\cdot 2 - 3\cdot y\cdot z |
31,382 | y = \frac{6}{\left(2(-1) + x\right)^3} \Rightarrow 6/y = (x + 2(-1))^3 |
-26,171 | \frac{1}{3}*21 + (-1) - \frac12*12 = 7 + (-1) + 6*(-1) = 0 |
21,849 | \sqrt{\sin^2{q} + \cos^2{q}}*f*q*a = a*q*f |
11,803 | \frac{k*2}{k^4}1 = \frac{2}{k^3} |
22,717 | \frac13(7 + 11) = 18/3 = 6 |
-20,847 | \tfrac{6 \cdot m}{m \cdot 6} \cdot 1 \cdot (-8/3) = \frac{1}{18 \cdot m} \cdot (\left(-48\right) \cdot m) |
16,284 | 4 = \binom{0 + 4 + (-1)}{0}*\binom{4}{3} |
32,260 | x^2 \cdot y^2 = (y \cdot x)^2 |
26,948 | z^{k + \left(-1\right)} \cdot k = \frac{\partial}{\partial z} z^k |
18,946 | 2z^2 + 2z = 2z \cdot (1 + z) |
22,592 | \sum_{k=1}^\infty \frac{k}{k^3} = \sum_{k=1}^\infty \frac{1}{k \cdot k} |
30,059 | \sum_{n=1}^{\infty} \frac{n}{(n+1)!}=\sum_{n=1}^{\infty} \frac{n+1-1}{(n+1)!} |
28,551 | (\sqrt{X}\cdot \sqrt{F})^2 = \sqrt{F}\cdot \sqrt{X}\cdot \sqrt{X}\cdot \sqrt{F} |
28,620 | \frac{7}{40} = \frac{3\cdot 7}{120} |
-499 | e^{\frac14\cdot \pi\cdot i\cdot 17} = (e^{\tfrac{\pi}{4}\cdot i})^{17} |
10,199 | -b + h = 0 \Rightarrow b = h |
245 | y = \dfrac{1}{z + 2} \Rightarrow z = \tfrac1y(1 - 2y) |
-9,356 | -2 \cdot 5 \cdot 5 + 2 \cdot 5 \cdot p = p \cdot 10 + 50 \cdot (-1) |
26,711 | 1 - x + x^2 = -(-\frac{x^2}{2} + x) + 1 + \frac12*x * x |
5,018 | \frac{1}{((-1) + m)\cdot \left(2\cdot \left(-1\right) + m\right)}\cdot (4\cdot (-1) + m)\cdot (m + 3\cdot \left(-1\right)) = \frac{1}{{m + (-1) \choose 2}}\cdot {3\cdot (-1) + m \choose 2} |
52,612 | \frac{\sin(A)\cdot\cos(B) + \sin(B)\cdot\cos(A)}{\cos(A)\cdot\cos(B)} = \tan(A) + \tan(B) |
14,368 | \left\{\cdots, \left( 3, 1\right), ( 2, 0), ( 4, 2)\right\} = 2 |
19,554 | \sqrt{x^2 + 4(-1)} - x = \frac{x^2 + 4(-1) - x^2}{\sqrt{x^2 + 4(-1)} + x} = -\frac{1}{\sqrt{x^2 + 4(-1)} + x}4 |
36,544 | 53 = 27*2 + 1 + 2*(-1) |
-159 | \frac{6!}{(6 + 4 \cdot (-1))! \cdot 4!} = {6 \choose 4} |
11,423 | \tan\left(\arctan(x) + \arctan(x^3)\right) = \frac{x + x^3}{1 - x^4} = \frac{x}{1 - x^2} |
35,344 | z_2 = -z_1 + 2\Longrightarrow -z_1 = z_2 |
20,034 | x*2 - e*2 = 2 (x - e) |
2,074 | \sin(\pi - x \cdot \pi) = \sin(\pi \cdot x) |
28,437 | \dfrac{1}{x\cdot h} = \frac{1}{h\cdot x} |
7,329 | I_J\cdot d^2 + I_J\cdot c^2 = (c \cdot c + d^2)\cdot I_J |
18,688 | \sqrt{5} = \frac{l}{n}2 + (-1) = \frac1n(2l - n) |
11,639 | x\cdot 8 + 5\cdot (-1) = -3\cdot x \cdot x + 8\cdot x + 1 - 6 - 3\cdot x^2 |
35,055 | e^{x \cdot 5} \cdot e^{x \cdot 5} = e^{x \cdot 10} |
12,753 | \sqrt{q - \sqrt{q + \sqrt{q \dotsm}}} = \left((-1) + \sqrt{1 + (q + \left(-1\right)) \cdot 4}\right)/2 |
-1,864 | -\pi \cdot \frac{11}{6} + \pi/12 = -\pi \cdot \frac14 \cdot 7 |
20,397 | \frac{1}{n^2}\cdot (\left(-1\right) + n^2) = -\frac{1}{n \cdot n} + 1 |
28,921 | \frac{(-1) + x}{(-1) + x^n} = \frac{1}{(x^n + \left(-1\right))\cdot \frac{1}{x + (-1)}} |
-1,589 | -\pi/4 + 2*\pi = 7/4*\pi |
-24,089 | \tfrac{1}{6 + 10}*32 = \frac{32}{16} = \tfrac{1}{16}*32 = 2 |
25,530 | (1 + x)^3 = 3\cdot (1^1 + 2^2 + \dots + x^2) + 3\cdot (1 + 2 + \dots + x) + x + 1 |
16,115 | a \cdot 5 + b \cdot 5^{1 / 2} = 5^{1 / 2} \cdot (a \cdot 5^{1 / 2} + b) |
8,415 | h * h*k = (2*h) * (2*h)*k*0.25 |
4,363 | 1 + \cos{x} = 1 + 2\times \cos^2{\tfrac{x}{2}} + \left(-1\right) = 2\times \cos^2{x/2} |
19,655 | \left((-1) + r\right)\cdot r\cdot (2\cdot (-1) + r)! = r! |
18,110 | (-3 \cdot a + 5)^2 - 4 \cdot (a \cdot a^2 - 2 \cdot a^2 - 2 \cdot a + 4) = -4 \cdot a^3 + 17 \cdot a^2 - 22 \cdot a + 9 = (9 - 4 \cdot a) \cdot (a + (-1))^2 |
-14,778 | 84 = \tfrac{420}{5} |
34,787 | \binom{(-1) + n}{n - r} = \binom{(-1) + n}{r + (-1)} |
4,170 | \sin(3x) = \sin(x + 2x) = \sin(x) \cos\left(2x\right) + \cos(x) \sin(2x) |
26,224 | 16 + 12*\left(-1\right) = 4 |
-2,739 | 13^{1/2}*\left(3 + 4\right) = 13^{1/2}*7 |
29,193 | 4(a \cdot a - mg \cdot g) = (a \cdot 2)^2 - (2g)^2 m |
-8,417 | \dfrac{1}{-3}*3 = -1 |
-9,156 | -a \cdot 7 \cdot 7 a + 2 \cdot 5 \cdot 7 a = 70 a - 49 a^2 |
4,635 | 1 + 25 (-1) + 100 + 100 (-1) + 25 + \left(-1\right) = 0 |
24,864 | (x^2)^{1 / 2} = (x^2)^{\frac{1}{2}} = x^{2/2} = x |
-6,143 | \tfrac{-r*5 + 7}{r^2*2 + 20 r + 18} = \frac{1}{18 + 2r^2 + r*20}\left(r + 9 - r*2 + 2(-1) - 4r\right) |
6,742 | (-1)^3 = (-1)^{6/2} = ((-1)^6)^{1/2} = 1^{\dfrac{1}{2}} = 1 |
13,738 | \frac{1}{3} = (\dfrac{2}{3})^3 + \left(\frac{1}{3}\right) * (\dfrac{1}{3})^2 |
14,096 | m^r = {m \choose 0} m^r |
25,761 | \frac98 = 3*\frac14/(2*1/3) |
-21,657 | -\tfrac{4}{11} = -4/11 |
-20,684 | -\frac{3}{7} \frac{1}{(-6) q}(q*(-6)) = \frac{18 q}{(-1)*42 q} |
37,089 | 768 = 2^8 \cdot 3 |
-2,491 | \sqrt{8}+\sqrt{50}-\sqrt{18} = \sqrt{4 \cdot 2}+\sqrt{25 \cdot 2}-\sqrt{9 \cdot 2} |
27,568 | (x + y + z)^2 = x^2 + y \cdot y + z \cdot z + (x \cdot y + z \cdot x + y \cdot z) \cdot 2 |
-5,231 | 0.18 \cdot 10^{(-5) \cdot (-1) - 5} = 10^0 \cdot 0.18 |
13,677 | 0 = \frac{13 + y\cdot 4}{5 + 2y^2 + y\cdot 7} \Rightarrow 0 = 13 + 4y |
9,319 | \theta_1 + 2*\pi*z = 2*\theta_2 - \theta_1 \Rightarrow z*\pi + \theta_1 = \theta_2 |
26,555 | \frac{dY}{dX} = -\frac{1}{3*X + 4*Y}*(2*X + 3*Y) = -\frac{2 + 3*\dfrac{1}{X}*Y}{3 + 4*Y/X} |
15,769 | \dfrac{1}{6}*\left(y^2 + y\right)*(2 + y) = \binom{2 + y}{3} |
-12,281 | \dfrac34 = \frac{r}{16 \cdot \pi} \cdot 16 \cdot \pi = r |
24,587 | \left(k + 2\right)*(k + 1)! = (k + 2)! |
21,352 | k\cdot z = k\cdot z |
32,900 | \left(e^{\frac{1}{2}\cdot t}\right)^2 = e^{\frac{t}{2}}\cdot e^{\dfrac{t}{2}} = e^t |
21,816 | 99 z = 13 \Rightarrow z = 13/99 |
10,056 | (3*n + 3*\left(-1\right))/3 + \frac{1}{3}*(3*n^2 + 3*n + 1) = \frac{1}{3}*(3*n^2 + 6*n + 2*(-1)) = n^2 + 2*n - 2/3 |
3,301 | \left(x + 1 = x \Rightarrow x \cdot x = x^2 + x \cdot 2 + 1\right) \Rightarrow x \cdot 2 + 1 = 0 |
19,148 | -2 \cdot e^{\dfrac13 \cdot (i \cdot (-1) \cdot \pi)} = -2 \cdot e^{\dfrac{1}{3} \cdot (i \cdot \pi \cdot (-1))} |
41,378 | |a \cdot g| = |g \cdot a| |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.