id
int64
-30,985
55.9k
text
stringlengths
5
437k
24,820
\dfrac{\sqrt{5}}{2} + \frac12 = \frac{1}{2}\cdot \left(\sqrt{5} + 1\right)
41,308
0\cdot y = y\cdot 0 = y
-5,270
10^4\times 0.89 = 10^{3\times \left(-1\right) + 7}\times 0.89
-4,588
\frac{1}{9\cdot (-1) + y^2}\cdot (18 + y\cdot 4) = -\frac{1}{3 + y} + \frac{5}{y + 3\cdot (-1)}
-27,339
\cos{x} \sin{x}*2 = \sin{x*2}
17,369
\frac{1}{1/81} = \dfrac{1}{\frac{1}{3^4}}
3,226
\ln(f)/(\ln(b)) = \log_b(f)
-11,563
4 i - 4 + 15 \left(-1\right) = 4 i - 19
15,085
\|A - F\| \leq \|A - F\|^3 \implies A = F
8,772
\sqrt{x^2 c c} = \sqrt{x^2} \sqrt{c^2} = |x| |c| = -x c
2,374
(z + (-1))\cdot (z + 1) = z^2 + \left(-1\right)
-3,932
\dfrac{3}{r \cdot 11} = 1/11 \cdot 3/r
17,941
5^\varepsilon = z \Rightarrow 5^{2\varepsilon} = (5^\varepsilon)^2 = z^2
12,053
det\left(D\times E + 1\right) = det\left(D\times E + 1\right)
10,715
\frac{1}{1 - Z}\cdot \left(1 - Z^{n + 1}\right) = 1 + Z + Z^2 + ... + Z^n
37,600
0.125 = \frac{1}{16}\times 2
-4,731
\frac{1}{15\cdot (-1) + y^2 - y\cdot 2}\cdot (-y\cdot 2 + 26) = -\frac{1}{y + 3}\cdot 4 + \dfrac{2}{5\cdot (-1) + y}
31,502
1 + z = \frac1z(z * z + z)
8,461
a \cdot (-A) = -a \cdot A = -a \cdot A
15,311
-\frac{8}{-216} = 1/27
-10,607
-\frac{1}{j^2}*(2 + j*5)*\frac44 = -\frac{1}{j^2*4}*(j*20 + 8)
51,708
-x = (-x)^4 = x^4 = x
23,349
\binom{24}{8}*\binom{16}{8} = \tfrac{24!}{8!^3} = 9465511770
29,036
1/6 = 3/18 = 1/18 + 2/18 = \frac{1}{9} + 1/18
12,747
6 \lt Q + 3*(-1) \Rightarrow 9 \lt Q
-3,651
8/9 \cdot q^2 = \dfrac{8}{9} \cdot q^2
-30,260
(5 + y)\cdot \left(5 + y\right) = 25 + y \cdot y + y\cdot 10
49,189
-80 - (-48) = -32
24,670
\frac{1}{x^7 - x} = -\frac{7*x^6 + (-1)}{-x + x^7} + \dfrac{7*x^6}{-x + x^7}
868
(\frac1a)^n = a^{-n} = \tfrac{1}{a^n}
18,974
|x - (x + z)/2|^2 = |\frac{x}{2} - \frac{1}{2}\cdot z|^2 = |\frac{1}{2}\cdot \left(x + z\right) - z|^2
12,093
y^2 - 3 \cdot y = y^2 - 3 \cdot y + \left(3/2\right) \cdot \left(3/2\right) - (3/2)^2 = \left(y - \frac32\right)^2 - \left(\frac{3}{2}\right)^2
2,074
\sin\left(-s\cdot \pi + \pi\right) = \sin(\pi\cdot s)
34,740
\frac{4\times \binom{9}{5}}{\binom{52}{5}}\times 1 = 3/15470
-11,588
-5 + 2 \cdot (-1) + i \cdot 3 = -7 + 3 \cdot i
-20,538
\dfrac{1}{15\cdot p + 10\cdot (-1)}\cdot \left(6\cdot (-1) + 9\cdot p\right) = 3/5\cdot \frac{1}{p\cdot 3 + 2\cdot (-1)}\cdot (p\cdot 3 + 2\cdot (-1))
-23,017
\frac{1}{44}\cdot 77 = 7\cdot 11/(4\cdot 11)
-3,651
p^2\cdot 8/9 = 8p^2/9
21,638
x x + (-1) = \left(x + 1\right) ((-1) + x)
23,586
(x + 3 \cdot x) \cdot 3 = x \cdot 12
18,535
x^3 + 4*x^2 + 14*x + 9 = (x + 3*(-1))*(x^2 + 7*x + 16) = (x + 3*\left(-1\right))*(x + 5*(-1))*(x + 7*\left(-1\right))
-4,281
\frac{r^5}{r} = r\times r\times r\times r\times r/r = r^4
7,465
\sum_{r=0}^l {l \choose r}\times {l \choose l - r} = \sum_{r=0}^l {l \choose r}^2
29,258
2 \cdot 2\cdot 179 = 716
22,068
20 = (7 + 5 \cdot (-1))^2 + (8 + 4 \cdot \left(-1\right))^2
4,143
\dfrac{1}{2^x \dfrac{1}{2}} = \frac{2}{2^x}
16,184
2^{100} + 3^{100} \lt 4^{100} \Rightarrow 3^{100} < -2^{100} + 2^{200}
23,047
\frac{1}{221} + \dfrac{1}{221} \cdot 16 = \frac{1}{221} \cdot 17 = \frac{4}{52}
-18,282
\frac{-5 \cdot r + r^2}{r^2 - r \cdot 10 + 25} = \dfrac{(5 \cdot \left(-1\right) + r) \cdot r}{(r + 5 \cdot (-1)) \cdot (r + 5 \cdot (-1))}
27,439
k + 1 + (k + 2) \dotsm + 2k = k + k + \dotsm + k
36,036
84 = \binom{7}{2} \cdot 4
14,625
x*g*n = k*x * x/2 \Rightarrow x = \frac{2*n*g}{k} = 0.126*n
30,271
(y + (-1)) (1 + y y + y) = y^3 + (-1)
28,965
(-1) + \mu^2 = (\mu + (-1)) \cdot \left(\mu + 1\right)
-25,791
\frac{10}{7 \cdot 4} = \frac{10}{28}
-9,378
-11 \cdot 2 \cdot 5 - 2 \cdot 5 \cdot 7 \cdot r = -70 \cdot r + 110 \cdot (-1)
3,572
0 = x,0 \neq y\Longrightarrow \frac{y}{x^4 + y^2} \cdot x^2 = 0
-20,968
\frac{x + 3 \cdot (-1)}{3 \cdot x} \cdot \frac14 \cdot 4 = \frac{1}{12 \cdot x} \cdot \left(12 \cdot \left(-1\right) + 4 \cdot x\right)
18,501
x^2 - x \cdot \left(q + p\right) + q \cdot p = (x - q) \cdot (-p + x)
12,371
2^{k + 1} + 2^{k + 1} + 2 \cdot \left(-1\right) = \left(2^{k + 1} + \left(-1\right)\right) \cdot 2
1,768
[e, b] = \left[c,d\right]\Longrightarrow e = b,d = c
15,352
\overline{x + p} = \overline{x} + \overline{p}
12,202
18 = \frac{1}{(-1) + 2} \cdot (2 \cdot (-1) + 20)
27,146
\operatorname{im}{(y)} = \sin{\pi \cdot \varepsilon/x} \Rightarrow e^{\dfrac{\varepsilon}{x} \cdot \pi \cdot i} = y
23,532
(\left(-1\right) + n)*2 + 2 = 2n
32,336
\frac{\mathrm{d}}{\mathrm{d}x} (-\cot\left(x\right) + 6) = -\csc^2(x)
-19,505
\frac56 \cdot \frac{1}{1} \cdot 2 = 1/6 \cdot 5/\left(\dfrac12\right)
6,925
(1 - m) (1 - c) (1 - z) = 1 - m - c - z + m c + m z + c z - m c z = m c + m z + c z - m c z
-2,105
-\pi \cdot 11/6 + \pi/6 = -\dfrac{1}{3} \cdot 5 \cdot \pi
8,972
\dfrac{p}{s} = \frac{p}{s}
17,037
D + D = 2\cdot D
6,185
z^2 + 2 \cdot z \cdot b + b^2 = (b + z) \cdot (b + z)
18,558
\sin{4\cdot z} = 2\cdot \sin{2\cdot z}\cdot \cos{2\cdot z} = 4\cdot \sin{z}\cdot \cos{z}\cdot (1 - 2\cdot \sin^2{z})
-29,570
-x = -x^2/x
25,537
4 = \frac{1}{1 - \frac{1}{2}} + 2
1,143
y^{(-1) + c} c = 1 \implies 1/c = y^{c + (-1)}
-21,657
-\frac{1}{11}4 = -\frac{4}{11}
6,001
-37 37 + s s = (s + 37) (37 (-1) + s)
31,847
h^{k*2} + (-1) = (h^k + (-1))*(h^k + 1)
26,029
\cosh{q} + \sinh{q} = e^q
38,027
32 = 16 \cdot 48/24
27,966
\dfrac{1}{3 \cdot \sqrt{3}} \cdot 16 = \frac{16}{9} \cdot \sqrt{3}
16,872
m \geq w \Rightarrow w = m
-7,107
\frac{5}{66} = 5/11\cdot 2/12
-10,420
2/2 (-\frac{6}{10 a + 6(-1)}) = -\frac{1}{a\cdot 20 + 12 (-1)}12
20,637
-2 \cdot y^2 + 16 \cdot y = -2 \cdot (y^2 + 8 \cdot (-1)) = -2 \cdot \left(y + 4 \cdot (-1)\right)^2 + 32
-499
e^{17 i\pi/4} = (e^{\dfrac{\pi i}{4}})^{17}
-23,227
\frac{1/5}{5}\cdot 2 = 2/25
27,849
256 = \binom{4}{2} \cdot \binom{4}{1} \cdot \binom{10}{1} + 16
21,930
22 = 25 + 3 \times (-1)
17,307
\left(a \cdot 3 + 3 = 0 \implies a \cdot 3 = -3\right) \implies -1 = a
45,378
20 = 6 + 5 + 3*3
1,983
(g^4)^{\frac15}\cdot (g^6)^{\frac15} = g^{4/5}\cdot g^{6/5} = g^2
3,434
\dfrac{158*\tfrac{1}{10}}{19*1/10} = 158/19 = 8.315 ...
19,970
\binom{n}{2*(-1) + n} = \binom{n}{2}
30,645
y^2 + (7\cdot y + 3\cdot (-1)) \cdot (7\cdot y + 3\cdot (-1)) = 50\cdot y^2 - 42\cdot y + 9 = 1 \Rightarrow 0 = 25\cdot y^2 - 21\cdot y + 4
34,697
k \geq n/2 rightarrow n - k \leq \frac12 \cdot n
21,563
D \times G = D \times G
24,179
\dfrac{1/\left(-2\right)}{0} = \frac12*4/1 \dfrac{1^{-1}}{0}2
-14,526
9 + \tfrac{2}{2} = 9 + 1 = 9 + 1 = 10