id
int64
-30,985
55.9k
text
stringlengths
5
437k
12,496
y\times 0.1 + y = 1.1\times y
7,379
l + j - 2j = l - j
11,609
1/2 = \frac32\frac18 + \frac{1}{8}\cdot 5/2
5,960
\sin(x)*3 - \sin^3(x)*4 = \sin(x*3)
-2,076
13/12 \cdot \pi = \pi \cdot \frac14 \cdot 3 + \pi/3
6,294
8A = 1 \Rightarrow \frac18 = A
20,966
zx + zy = (x + y) z
10,461
(y \cdot p)^2 = (p \cdot y)^2
21,676
h/c = 1/\left(\frac1h c\right)
24,697
i + x - 2 \cdot i = x - i
1,184
\gamma = \tfrac{\gamma}{π}\cdot π
-12,035
31/45 = \dfrac{1}{18 \cdot \pi} \cdot x \cdot 18 \cdot \pi = x
6,372
Y\cdot U = U\cdot Y
7,858
-(p^2 + q^2 + s^2) + (s + p + q) \cdot (s + p + q) = 2\cdot (p\cdot q + q\cdot s + p\cdot s)
31,854
-\frac{i\cdot π}{4}\cdot 1 + \frac{i\cdot π}{4}\cdot 1 = 0
24,871
x\cdot 2 = x + (-1) + x + 1
20,398
\int_1^0 \dotsm\,\mathrm{d}z = -\int\limits_0^1 \dotsm\,\mathrm{d}z
14,528
1/\left(x\cdot y\right) = 1/(x\cdot y)
-22,725
\frac{35}{15} = \frac{7 \cdot 5}{5 \cdot 3}
24,259
\left(x + v\right)\times g = v\times g + x\times g
-10,601
\frac{35}{s\cdot 5 + 15\cdot (-1)} = 5/5\cdot \frac{1}{3\cdot (-1) + s}\cdot 7
-20,918
\tfrac16 \cdot (18 \cdot k + 24) = \dfrac12 \cdot \left(6 \cdot k + 8\right) \cdot 3/3
25,203
l \gt 3 = 2 + 1\Longrightarrow 1 \lt l + 2*(-1)
-16,579
\sqrt{25\cdot 7}\cdot 11 = 11\cdot \sqrt{175}
11,668
-Y^2*3 + \left(2*Y + X\right)^2 = X^2 + 4*Y*X + Y^2
15,162
\sin(C + A) = \sin(A) \cos(C) + \sin(C) \cos(A)
19,264
\frac{2}{16} = \tfrac18\cdot 7 < 1
-2,885
2\sqrt{3} = \sqrt{3}*\left(5 + 1 + 4(-1)\right)
20,681
21557 \times (3 \times 7 \times 11 \times 13)^2 = 194401220013
5,911
a^2 - 4 a + 5 (-1) = (a + 5 (-1)) (a + 1) = 0 \Rightarrow -1 = a, 5
-24,192
2 + \dfrac{15}{5} = 2 + 3 = 5
31,287
\tfrac{A}{m^N} = \tfrac{1}{m^N}*A
-3,111
\sqrt{5} \cdot (4 + 2 + (-1)) = 5\sqrt{5}
21,212
(\frac12*2) * (\frac12*2)*1*2 + 2*\left(\frac21\right)^2 = 10
390
e^{(-1) + z \cdot 2} \cdot 2 = \frac{\mathrm{d}}{\mathrm{d}z} (1 + e^{(-1) + 2 \cdot z})
-1,824
\pi \cdot \dfrac{11}{6} + \frac{4}{3} \cdot \pi = \pi \cdot \frac{19}{6}
17,432
-\left(X - Y\right)^2/4 + \frac{1}{4}(X + Y)^2 = YX
15,380
15 = w*5 \Rightarrow 3 = w
-12,030
2/3 = r/(8*\pi)*8*\pi = r
31,272
420 = \dfrac{1}{2!*3!}7!
16,573
2 \cdot 2^k + (-1) = 2^k \cdot 3 + \left(-1\right) - 2^k
5,112
l \cdot 2 + 1 = \left(1 + l\right) \cdot 2 + (-1)
16,339
p^2 + (-p + m) \times p + (-p + n) \times p = p \times (m + n - p)
7,508
v*(A + B) = B v + v A
30,364
e\cdot e^{(-1) + x} = e^x
7,934
\dfrac{3!}{0! \times 3! \times 0!} = 1
2,888
(\left(-1\right) + y)*(y + 1) = \left(-1\right) + y^2
51,562
30^2\cdot 75^4 = \left(3\cdot 10\right)^2\cdot (3\cdot 25)^4 = 3^2\cdot 10^2\cdot 3^4\cdot 25^4 = 3^6\cdot 10^2\cdot 25^4
35,734
-6485 \cdot 6485\cdot 13 + 23382 \cdot 23382 = -1
25,682
\left(-y + z\right)/2 = s \implies s^2 + 1 = \frac14 (z^2 - 2 z y + y^2) + 1
13,491
w_3*w_1*w_2 = w_1*w_2*w_3
28,425
f_2^{f_1}\cdot f_2 = f_2^{1 + f_1}
2,115
\frac{y}{z} = \dfrac{y}{z}
-7,088
5/33 = 4/11*5/12
2,361
-\dfrac{1}{4} + 1 = \dfrac{3}{4}
6,702
2c\sqrt{c} = 2c^{3/2}
16,909
\dfrac{361}{10000} = (\frac{19}{100})^2
-17,702
91 + 62 (-1) = 29
-19,583
\tfrac{\frac{3}{7}}{\frac{1}{7} \cdot 8} \cdot 1 = 7/8 \cdot 3/7
-4,662
x^2 + 4*(-1) = (2*(-1) + x)*(2 + x)
32,600
\frac{2}{M\cdot N} = 1/\left(N\cdot M\right) = N^T\cdot M^T = (M\cdot N)^T
18,444
\binom{3}{2} \binom{2}{1}*2! \binom{5}{3} \binom{3}{1} = 360
6,354
(1 + 1) \cdot \left(1 + 1\right) \cdot (2 + 1) \cdot (4 + 1) = 60
39,097
-(-b + f) \cdot (-b + f) = \left(a - x\right)^2 \Rightarrow (a - x)^2 + (-b + f)^2 = 0
9,980
\frac{1}{-x \cdot x + (-x + 1) \cdot (1 - x \cdot 2)} \cdot x = \tfrac{1}{x^2 + 1 - x \cdot 3} \cdot x
-5,732
\frac{4}{\left(q + (-1)\right)*5} = \frac{4}{5q + 5(-1)}
27,866
-y^2 + x^2 = (x + y)\times (x - y)
27,828
y + z^2*y = z + z*y^2 \Rightarrow z = y
2,814
\cos{\tfrac{x}{2}}\cdot \sin{\dfrac{x}{2}}\cdot 2 = \sin{x}
39,901
x = x = x*(5*3 - 14*2)
-10,781
\dfrac12*2*(-\frac{1}{25*q + 20*(-1)}*6) = -\frac{1}{40*\left(-1\right) + 50*q}*12
2,284
\sin(\dfrac{\pi x}{2})/x = \frac{1}{2}\pi \frac{\sin(\frac{x\pi}{2}1)}{x\pi \frac12}
38,931
-i + 2*i + 1 = i + 1
1,842
2/3 = 1/3 + 1/3 + 2/3 \cdot 0
21,000
5 = 12 + 3(-1) + 4(-1)
15,153
\sqrt{1 + 4h^2} < \sqrt{1 + 4h + 4h^2} = \sqrt{\left(1 + 2h\right)^2} = 1 + 2h
-4,454
-\frac{1}{(-1) + y}2 - \frac{1}{3 + y}2 = \frac{1}{3(-1) + y^2 + y \cdot 2}\left(4(-1) - 4y\right)
17,250
\binom{1}{0}\cdot \binom{2}{2}\cdot \binom{3}{1} = \binom{3}{2}\cdot \binom{2}{0}\cdot \binom{1}{1}
-4,323
\frac{6}{y^2} \cdot 1/5 = \frac{6}{5 \cdot y^2}
3,215
|y|/|w| = |y/w|
17,021
\cos\left(3 \cdot x + x\right) = \cos(4 \cdot x)
115
\frac{1}{49} 34 - 18/49 = 16/49
27,242
(2\cdot g + 2\cdot b + d)/3 = \frac{1}{5}\cdot (3\cdot g + 4\cdot d) = (2\cdot g + b + 2\cdot d)/3
-15,144
\frac{1}{y^4\cdot \frac{1}{q^4}}\cdot q^3 = \frac{q^3}{\frac{1}{q^4\cdot \frac{1}{y^4}}}
-4,671
\frac{z + 14 \cdot (-1)}{z^2 + 4 \cdot (-1)} = -\frac{3}{2 \cdot (-1) + z} + \frac{4}{z + 2}
24,823
\frac{1}{z\cdot \gamma} = 1/(\gamma\cdot z)
-29,571
\frac{5*x^2}{x} + \dfrac1x*x + 7/x = \frac1x*(5*x^2 + x + 7)
-19,208
\frac{1}{5} = \frac{A_r}{16 \cdot π} \cdot 16 \cdot π = A_r
35,362
100 = 2^x\cdot \left(1 + x\right) = \dfrac{1}{2}\cdot 2^{1 + x}\cdot (1 + x)
14,071
5\cdot (1/6)^{19}\cdot 19 = \tfrac{95}{609359740010496}
-5,495
\frac{3}{r \cdot 2 + 12} = \frac{3}{2 \cdot (r + 6)}
1,968
7/17 = \frac{1}{\dfrac{1}{\frac{1}{3} + 2} + 2}
22,462
\tan^{-1}{z} = z - z^3/3 + \frac{z^5}{5} + z^7/7 - \dots
1,564
\binom{5}{2} = \frac{5}{2} \cdot 4 = 10
-3,924
\tfrac{6\cdot r^4}{22\cdot r^5} = \frac{6}{22}\cdot \frac{r^4}{r^5}
35,843
7*5=35
6,618
v_1 - 1/(v_1) = v_2 - \frac{1}{v_2} \Rightarrow 1/(v_1) - 1/(v_2) = -v_2 + v_1
30,842
a\times \frac12\times a = a^2/2
23,523
\frac{1}{161} \times 7 = 1/23
21,467
\left(x + n\right) \cdot \left(x + n\right) = n \cdot n + x \cdot x + 2\cdot n\cdot x