id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
12,496 | y\times 0.1 + y = 1.1\times y |
7,379 | l + j - 2j = l - j |
11,609 | 1/2 = \frac32\frac18 + \frac{1}{8}\cdot 5/2 |
5,960 | \sin(x)*3 - \sin^3(x)*4 = \sin(x*3) |
-2,076 | 13/12 \cdot \pi = \pi \cdot \frac14 \cdot 3 + \pi/3 |
6,294 | 8A = 1 \Rightarrow \frac18 = A |
20,966 | zx + zy = (x + y) z |
10,461 | (y \cdot p)^2 = (p \cdot y)^2 |
21,676 | h/c = 1/\left(\frac1h c\right) |
24,697 | i + x - 2 \cdot i = x - i |
1,184 | \gamma = \tfrac{\gamma}{π}\cdot π |
-12,035 | 31/45 = \dfrac{1}{18 \cdot \pi} \cdot x \cdot 18 \cdot \pi = x |
6,372 | Y\cdot U = U\cdot Y |
7,858 | -(p^2 + q^2 + s^2) + (s + p + q) \cdot (s + p + q) = 2\cdot (p\cdot q + q\cdot s + p\cdot s) |
31,854 | -\frac{i\cdot π}{4}\cdot 1 + \frac{i\cdot π}{4}\cdot 1 = 0 |
24,871 | x\cdot 2 = x + (-1) + x + 1 |
20,398 | \int_1^0 \dotsm\,\mathrm{d}z = -\int\limits_0^1 \dotsm\,\mathrm{d}z |
14,528 | 1/\left(x\cdot y\right) = 1/(x\cdot y) |
-22,725 | \frac{35}{15} = \frac{7 \cdot 5}{5 \cdot 3} |
24,259 | \left(x + v\right)\times g = v\times g + x\times g |
-10,601 | \frac{35}{s\cdot 5 + 15\cdot (-1)} = 5/5\cdot \frac{1}{3\cdot (-1) + s}\cdot 7 |
-20,918 | \tfrac16 \cdot (18 \cdot k + 24) = \dfrac12 \cdot \left(6 \cdot k + 8\right) \cdot 3/3 |
25,203 | l \gt 3 = 2 + 1\Longrightarrow 1 \lt l + 2*(-1) |
-16,579 | \sqrt{25\cdot 7}\cdot 11 = 11\cdot \sqrt{175} |
11,668 | -Y^2*3 + \left(2*Y + X\right)^2 = X^2 + 4*Y*X + Y^2 |
15,162 | \sin(C + A) = \sin(A) \cos(C) + \sin(C) \cos(A) |
19,264 | \frac{2}{16} = \tfrac18\cdot 7 < 1 |
-2,885 | 2\sqrt{3} = \sqrt{3}*\left(5 + 1 + 4(-1)\right) |
20,681 | 21557 \times (3 \times 7 \times 11 \times 13)^2 = 194401220013 |
5,911 | a^2 - 4 a + 5 (-1) = (a + 5 (-1)) (a + 1) = 0 \Rightarrow -1 = a, 5 |
-24,192 | 2 + \dfrac{15}{5} = 2 + 3 = 5 |
31,287 | \tfrac{A}{m^N} = \tfrac{1}{m^N}*A |
-3,111 | \sqrt{5} \cdot (4 + 2 + (-1)) = 5\sqrt{5} |
21,212 | (\frac12*2) * (\frac12*2)*1*2 + 2*\left(\frac21\right)^2 = 10 |
390 | e^{(-1) + z \cdot 2} \cdot 2 = \frac{\mathrm{d}}{\mathrm{d}z} (1 + e^{(-1) + 2 \cdot z}) |
-1,824 | \pi \cdot \dfrac{11}{6} + \frac{4}{3} \cdot \pi = \pi \cdot \frac{19}{6} |
17,432 | -\left(X - Y\right)^2/4 + \frac{1}{4}(X + Y)^2 = YX |
15,380 | 15 = w*5 \Rightarrow 3 = w |
-12,030 | 2/3 = r/(8*\pi)*8*\pi = r |
31,272 | 420 = \dfrac{1}{2!*3!}7! |
16,573 | 2 \cdot 2^k + (-1) = 2^k \cdot 3 + \left(-1\right) - 2^k |
5,112 | l \cdot 2 + 1 = \left(1 + l\right) \cdot 2 + (-1) |
16,339 | p^2 + (-p + m) \times p + (-p + n) \times p = p \times (m + n - p) |
7,508 | v*(A + B) = B v + v A |
30,364 | e\cdot e^{(-1) + x} = e^x |
7,934 | \dfrac{3!}{0! \times 3! \times 0!} = 1 |
2,888 | (\left(-1\right) + y)*(y + 1) = \left(-1\right) + y^2 |
51,562 | 30^2\cdot 75^4 = \left(3\cdot 10\right)^2\cdot (3\cdot 25)^4 = 3^2\cdot 10^2\cdot 3^4\cdot 25^4 = 3^6\cdot 10^2\cdot 25^4 |
35,734 | -6485 \cdot 6485\cdot 13 + 23382 \cdot 23382 = -1 |
25,682 | \left(-y + z\right)/2 = s \implies s^2 + 1 = \frac14 (z^2 - 2 z y + y^2) + 1 |
13,491 | w_3*w_1*w_2 = w_1*w_2*w_3 |
28,425 | f_2^{f_1}\cdot f_2 = f_2^{1 + f_1} |
2,115 | \frac{y}{z} = \dfrac{y}{z} |
-7,088 | 5/33 = 4/11*5/12 |
2,361 | -\dfrac{1}{4} + 1 = \dfrac{3}{4} |
6,702 | 2c\sqrt{c} = 2c^{3/2} |
16,909 | \dfrac{361}{10000} = (\frac{19}{100})^2 |
-17,702 | 91 + 62 (-1) = 29 |
-19,583 | \tfrac{\frac{3}{7}}{\frac{1}{7} \cdot 8} \cdot 1 = 7/8 \cdot 3/7 |
-4,662 | x^2 + 4*(-1) = (2*(-1) + x)*(2 + x) |
32,600 | \frac{2}{M\cdot N} = 1/\left(N\cdot M\right) = N^T\cdot M^T = (M\cdot N)^T |
18,444 | \binom{3}{2} \binom{2}{1}*2! \binom{5}{3} \binom{3}{1} = 360 |
6,354 | (1 + 1) \cdot \left(1 + 1\right) \cdot (2 + 1) \cdot (4 + 1) = 60 |
39,097 | -(-b + f) \cdot (-b + f) = \left(a - x\right)^2 \Rightarrow (a - x)^2 + (-b + f)^2 = 0 |
9,980 | \frac{1}{-x \cdot x + (-x + 1) \cdot (1 - x \cdot 2)} \cdot x = \tfrac{1}{x^2 + 1 - x \cdot 3} \cdot x |
-5,732 | \frac{4}{\left(q + (-1)\right)*5} = \frac{4}{5q + 5(-1)} |
27,866 | -y^2 + x^2 = (x + y)\times (x - y) |
27,828 | y + z^2*y = z + z*y^2 \Rightarrow z = y |
2,814 | \cos{\tfrac{x}{2}}\cdot \sin{\dfrac{x}{2}}\cdot 2 = \sin{x} |
39,901 | x = x = x*(5*3 - 14*2) |
-10,781 | \dfrac12*2*(-\frac{1}{25*q + 20*(-1)}*6) = -\frac{1}{40*\left(-1\right) + 50*q}*12 |
2,284 | \sin(\dfrac{\pi x}{2})/x = \frac{1}{2}\pi \frac{\sin(\frac{x\pi}{2}1)}{x\pi \frac12} |
38,931 | -i + 2*i + 1 = i + 1 |
1,842 | 2/3 = 1/3 + 1/3 + 2/3 \cdot 0 |
21,000 | 5 = 12 + 3(-1) + 4(-1) |
15,153 | \sqrt{1 + 4h^2} < \sqrt{1 + 4h + 4h^2} = \sqrt{\left(1 + 2h\right)^2} = 1 + 2h |
-4,454 | -\frac{1}{(-1) + y}2 - \frac{1}{3 + y}2 = \frac{1}{3(-1) + y^2 + y \cdot 2}\left(4(-1) - 4y\right) |
17,250 | \binom{1}{0}\cdot \binom{2}{2}\cdot \binom{3}{1} = \binom{3}{2}\cdot \binom{2}{0}\cdot \binom{1}{1} |
-4,323 | \frac{6}{y^2} \cdot 1/5 = \frac{6}{5 \cdot y^2} |
3,215 | |y|/|w| = |y/w| |
17,021 | \cos\left(3 \cdot x + x\right) = \cos(4 \cdot x) |
115 | \frac{1}{49} 34 - 18/49 = 16/49 |
27,242 | (2\cdot g + 2\cdot b + d)/3 = \frac{1}{5}\cdot (3\cdot g + 4\cdot d) = (2\cdot g + b + 2\cdot d)/3 |
-15,144 | \frac{1}{y^4\cdot \frac{1}{q^4}}\cdot q^3 = \frac{q^3}{\frac{1}{q^4\cdot \frac{1}{y^4}}} |
-4,671 | \frac{z + 14 \cdot (-1)}{z^2 + 4 \cdot (-1)} = -\frac{3}{2 \cdot (-1) + z} + \frac{4}{z + 2} |
24,823 | \frac{1}{z\cdot \gamma} = 1/(\gamma\cdot z) |
-29,571 | \frac{5*x^2}{x} + \dfrac1x*x + 7/x = \frac1x*(5*x^2 + x + 7) |
-19,208 | \frac{1}{5} = \frac{A_r}{16 \cdot π} \cdot 16 \cdot π = A_r |
35,362 | 100 = 2^x\cdot \left(1 + x\right) = \dfrac{1}{2}\cdot 2^{1 + x}\cdot (1 + x) |
14,071 | 5\cdot (1/6)^{19}\cdot 19 = \tfrac{95}{609359740010496} |
-5,495 | \frac{3}{r \cdot 2 + 12} = \frac{3}{2 \cdot (r + 6)} |
1,968 | 7/17 = \frac{1}{\dfrac{1}{\frac{1}{3} + 2} + 2} |
22,462 | \tan^{-1}{z} = z - z^3/3 + \frac{z^5}{5} + z^7/7 - \dots |
1,564 | \binom{5}{2} = \frac{5}{2} \cdot 4 = 10 |
-3,924 | \tfrac{6\cdot r^4}{22\cdot r^5} = \frac{6}{22}\cdot \frac{r^4}{r^5} |
35,843 | 7*5=35 |
6,618 | v_1 - 1/(v_1) = v_2 - \frac{1}{v_2} \Rightarrow 1/(v_1) - 1/(v_2) = -v_2 + v_1 |
30,842 | a\times \frac12\times a = a^2/2 |
23,523 | \frac{1}{161} \times 7 = 1/23 |
21,467 | \left(x + n\right) \cdot \left(x + n\right) = n \cdot n + x \cdot x + 2\cdot n\cdot x |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.