id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
10,760 | (1 + \alpha + \beta)\cdot 2 = \alpha\cdot 2 + 1 + 2\cdot \beta + 1 |
2,752 | (m + (-1))/m = (-\left(m + (-1)\right)! + m!)/m! |
43,854 | \frac{5}{2} = \frac{1}{2} \times 5 |
48,236 | 0.125 = 8\cdot 0.25\cdot 0.25\cdot 0.25 |
-3,572 | \frac{q}{q \cdot q} = \frac{1}{q \cdot q} \cdot q = \frac1q |
33,093 | \dfrac{1}{V \cdot R} = \dfrac{1}{R \cdot V} |
26,280 | 1 + n \cdot n + n \cdot 2 = (1 + n)^2 |
20,751 | S*T = S^{\frac{1}{2}}*S^{1/2}*T^{1/2}*T^{1/2} |
11,346 | I + T + T^2 + \cdots + T^k = \frac{1}{I - T}\cdot (1 - T^{k + 1}) |
35,526 | \frac{1}{36}\cdot 5 = |\frac19 - \dfrac{1}{4}| \leq |\tfrac13 - \frac12|^2 |
34,560 | 2\cdot z/2 = 1/2\cdot 2\cdot z = z |
10,854 | 10\cdot 8\cdot 6\cdot 7!/10! = \frac{6}{8\cdot 9}\cdot 8 = 2/3 |
8,752 | 3^{2 n} + (-1) = 9^n - 1^n = \left(9 + (-1)\right) (9^{n + (-1)} + 9^{n + 2 (-1)} + \ldots + 1) = 8*\left(9^{n + (-1)} + 9^{n + 2 (-1)} + \ldots + 1\right) |
2,471 | \frac{\partial}{\partial x} \operatorname{atan}(x \times b + a) = \frac{b}{(b \times x + a)^2 + 1} |
10,685 | 1100 = 3600 - \tfrac12*50*50 - 1/2*50*50 |
20,373 | (1 + y + y^2 + y^3 + \dotsm)^5 = \frac{1}{(1 - y)^5} |
14,140 | \left(1 + k\right)! = k! \cdot (k + 1) |
2,672 | \cos{u}\cdot \cos{w} - \sin{u}\cdot \sin{w} = \cos(u + w) |
24,712 | \frac{2 \cdot x}{x + 7 \cdot \left(-1\right)} = \dfrac{1}{7 \cdot (-1) + x} \cdot 14 + \frac{2}{x + 7 \cdot (-1)} \cdot (7 \cdot \left(-1\right) + x) |
2,243 | \sin^2(\theta)\cdot \sin^2\left(\theta\right) = \sin^4\left(\theta\right) |
-2,103 | \tfrac{5}{12} \pi = -\dfrac{\pi}{12} + \tfrac{1}{2} \pi |
14,971 | 8 \cdot x = 2 \cdot 2 \cdot x + x \cdot 4 |
3,766 | 2\times (y + (-1)) + 2 = y\times 2 |
-5,161 | 10^{1 - -2}\cdot 0.97 = 10^3\cdot 0.97 |
28,687 | \tfrac13100 = \frac{1000}{30} |
-19,508 | 5/2 \cdot \tfrac92 = \frac{1/2 \cdot 9}{2 \cdot 1/5} |
34,899 | \dfrac1y \cdot \dfrac1y = \dfrac{1}{y^2} |
14,488 | z = y^3 \Rightarrow z = y^{1/3} |
13,190 | BC^2 = 16 + 9 - 6 = 19 \implies BC =\sqrt{19} |
-3,118 | 12\cdot \sqrt{2} = \sqrt{2}\cdot (4 + 3 + 5) |
17,147 | x \cdot x - 5 \cdot x + 6 = \left(2 \cdot \left(-1\right) + x\right) \cdot (x + 3 \cdot (-1)) |
32,439 | (3*3930^{1/2} + 176)^{\frac13} = (176 + 3*3930^{1/2})^{1/3} |
12,645 | 1 + \dfrac{1}{5} = 6/5 |
-2,507 | ( 1 + 3 + 2 )\sqrt{10} = 6\sqrt{10} |
-30,343 | 0 = (p\times s_0) \times (p\times s_0) + 3\times p\times s_0 + 18\times (-1) = \left(p\times s_0 + 6\right)\times (p\times s_0 + 3\times (-1)) |
4,495 | -c + \frac1b \cdot a = \dfrac{1}{b} \cdot a - c |
29,431 | (a \cdot 2)^m = 2^m a^m |
51,021 | \frac{1}{16} \cdot 9 = 0.5625 \approx 0.56 |
6,109 | \frac{1}{\lambda} \cdot 2 \cdot \lambda^3 = 2 \cdot \lambda \cdot \lambda |
1,274 | \dfrac{1}{a} = \frac1a \coloneqq 1/a |
20,646 | \binom{n + x + (-1)}{x + (-1)} = \binom{n + x + (-1)}{n} = \binom{n}{x} |
5,190 | \pi/12 = \operatorname{asin}\left(\dfrac{1}{2*\sqrt{2}}*(\sqrt{3} + (-1))\right) |
7,888 | (-a + v)/v = 1 - \frac1v*a |
11,889 | \dfrac{n^2}{5*(-1) + n^2 - n} = \frac{1}{1 - \tfrac1n - \tfrac{1}{n^2}*5} |
6,659 | \frac{1}{(3 + (-1))!}\left(4 + \left(-1\right)\right)! = 3!/2! = 6/2 = 3 |
-20,547 | -\dfrac{8}{-3 \cdot l + 7 \cdot (-1)} \cdot \dfrac33 = -\frac{1}{-l \cdot 9 + 21 \cdot (-1)} \cdot 24 |
16,247 | \frac{1}{4}*2 = \tfrac12 |
16,733 | \tfrac56*(n^2 + n*2) = \frac{1}{6}*5*\left(\left(1 + n\right)^2 + (-1)\right) |
-11,967 | \tfrac12 = s/(6*\pi)*6*\pi = s |
-30,256 | \dfrac{z^2 + 36\cdot (-1)}{z + 6\cdot (-1)} = \frac{1}{z + 6\cdot (-1)}\cdot (z + 6)\cdot (z + 6\cdot (-1)) = z + 6 |
-20,148 | \frac{-42 k + 28}{-k\cdot 21 + 49} = 7/7 \tfrac{4 - k\cdot 6}{-3k + 7} |
10,083 | \cos{x} = \cosh{i\cdot x} = \frac12\cdot (e^{i\cdot x} + e^{-i\cdot x}) = \frac{1}{2\cdot e^{i\cdot x}}\cdot (e^{2\cdot i\cdot x} + 1) |
5,097 | 2\cdot \sin(l)\cdot \cos(l) = \sin(2\cdot l) |
-1,857 | -\pi\cdot 17/12 + 17/12\cdot \pi = 0 |
-578 | e^{i\pi/3*14} = (e^{\dfrac{1}{3}i\pi})^{14} |
-4,810 | 10^{6 - 1} \cdot 29.6 = 29.6 \cdot 10^5 |
20,533 | 96 \cdot π = 3 \cdot 2 \cdot π \cdot 16 |
-19,315 | 5 \cdot 1/2/\left(1/3\right) = \frac{3}{1} \cdot \dfrac52 |
2,804 | (p^2 - 2 \cdot p + (-1)) \cdot (p + (-1)) = 1 + p^3 - 3 \cdot p^2 + p |
-23,204 | -3/2*9 = -\dfrac{1}{2}*27 |
-10,488 | (4z + 1)/z \frac{3}{3} = \tfrac{1}{z*3}(3 + z*12) |
35,393 | 122461/371293 = 1 - (1 - \frac{1}{13})^5 |
-1,642 | π/4 = 7/4\cdot π - \frac32\cdot π |
-900 | 949/10000 = \frac{9}{10000} + 0 + \dfrac{1}{10}\cdot 0 + \frac{9}{100} + 4/1000 |
34,371 | \sin{x} = \cos(-x + \dfrac12\cdot \pi) |
-12,569 | \dfrac12\cdot 58 = 29 |
17,018 | u^2 + \frac{1}{u \cdot u} + 1 = \left(u + \frac{1}{u}\right)^2 + (-1) = \left(u + \dfrac{1}{u} + 1\right) \cdot (u + \frac1u + (-1)) |
19,892 | \sqrt{\frac{1}{64}100} = \frac{1}{8}10 = \dfrac{5}{4} |
2,135 | y^2 \cdot 2 + y \cdot 2 + 2 = 2 \cdot y^2 + 2 \cdot y + 2 |
2,857 | 4 \times k^2 = (k \times 2) \times (k \times 2) |
4,808 | (x + q)\cdot (x - q) = x^2 - q^2 |
8,283 | a \cdot b = \frac{1}{\frac{1}{a \cdot b}} = \dfrac{1}{\tfrac1a \cdot \frac1b} = \frac{1}{\frac{1}{b} \cdot 1/a} = b \cdot a |
-14,622 | \frac{1}{9}828 = 92 |
25,839 | \mathbb{E}\left[RC\right] = \mathbb{E}\left[C\right] \mathbb{E}\left[R\right] |
-535 | e^{5\cdot \pi\cdot i/4\cdot 18} = (e^{\dfrac{5}{4}\cdot \pi\cdot i})^{18} |
28,974 | 3\cdot x \cdot x = 15 \implies x^2 = 5 |
34,362 | 9\times 16/2! = 72 |
26,610 | 9/7 = \frac{2}{7} + 1 |
22,785 | (1 + y)^{t + s} = (y + 1)^t\cdot \left(1 + y\right)^s |
5,908 | (n + 8)^2 - n * n = 16*(4 + n) |
5,063 | 4 \cdot b^2 - c \cdot a \cdot 4 = 0\Longrightarrow c^3 + a^3 + b^3 = 3 \cdot a \cdot b \cdot c |
104 | \frac16 + \frac{1}{12} + 1/24 + \frac{1}{48} = \dfrac{15}{48} |
13,061 | \frac{1}{2} \cdot a^2 + h \cdot h/2 = (a \cdot a + h^2)/2 |
4,358 | n^2 \cdot \left(2 \cdot (-1) + n\right)! = (n + 2 \cdot \left(-1\right))! + (n + (-1))! + n! |
1,849 | x_1\cdot 2 + x_3 = -b + t^2 rightarrow -b + t^2 - 2\cdot x_1 = x_3 |
-3,174 | \sqrt{2} \cdot 4 + \sqrt{2} \cdot 5 = \sqrt{16} \cdot \sqrt{2} + \sqrt{2} \cdot \sqrt{25} |
-7,712 | \dfrac{104 - 28i + 78i + 21}{25} = \dfrac{125 + 50i}{25} = 5+2i |
51,870 | |-D + x| = |D - x| |
26,433 | \frac{1}{2*(1/2 + \frac{1}{12})} = 6/7 |
19,338 | 7*142857 = 10^6 + \left(-1\right) |
12,162 | \sin(z) = \frac{1}{2*i}*\left(e^{i*z} - e^{-i*z}\right) = -i*\sinh(i*z) |
1,112 | -b + c = \dfrac{c^2 - b * b}{c + b} |
-7,161 | \frac{1}{10}2\cdot \frac{1}{11}5 = 1/11 |
-6,346 | \frac{1}{\left(n + 7*\left(-1\right)\right)*5}*3 = \dfrac{3}{n*5 + 35*(-1)} |
-683 | e^{i\pi/6*19} = \left(e^{i\pi/6}\right)^{19} |
18,328 | (\frac{1}{2})^4 \cdot \binom{4}{3} = \frac14 |
24,959 | \sqrt{3} \cdot \frac{1}{2} \cdot \sqrt{3}/2 = \frac14 \cdot 3 |
-20,311 | \frac17\times (4 + x)\times \dfrac55 = (x\times 5 + 20)/35 |
5,938 | 4 - 4*(-x + 1) = x*4 |
28,361 | E[Q + B] = E[Q] + E[B] |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.