id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
-4,460 | \dfrac{-2*x + 1}{x * x - x + 20*(-1)} = -\dfrac{1}{4 + x} - \frac{1}{5*(-1) + x} |
-25,312 | \frac{\mathrm{d}}{\mathrm{d}x} (\frac{1}{x}*\cos{x}) = \frac{1}{x^2}*(-x*\sin{x} - \cos{x}) |
11,763 | ef dc = ed cf |
3,663 | \frac{12}{25}*11/24 = \frac{11}{50} |
-15,171 | \frac{1}{\frac{1}{s^{16}} \cdot (s^5 \cdot y)^2} = \tfrac{s^{16}}{y \cdot y \cdot s^{10}} |
-7,703 | \frac{1}{3 i - 5} (-3 - i*5) = \frac{1}{-5 - i*3} (-5 - 3 i) \dfrac{1}{-5 + i*3} (-3 - 5 i) |
5,287 | \frac{1}{12}(n^2 \cdot 3 + n^4 + 8n \cdot n) = \tfrac{1}{12}n^4 + 11/12 n^2 |
13,893 | (1 + 4)^x + (-1) = (-1) + 5^x |
4,404 | 11^2 + 3^2 = 9^2 + 7^2 |
6,553 | -\frac{8}{\left(-6\right)^3} = \frac{1}{27} |
27,491 | H_1/F + H_2/F = (H_1 + H_2)/F |
5,220 | ( 2 \cdot (a + 5), \left(5 + a\right) \cdot 3, 17) = ( 10 + 2 \cdot a, 3 \cdot a + 15, 17) |
6,226 | 256 * 256 * 256 - 255^3 = 195841 = 22 * 22^2 + 57^3 = 9^3 + 58^3 |
6,394 | E[X^\complement] = X^\complement |
-16,905 | -3\cdot n = -3\cdot n\cdot 3\cdot n + -3\cdot n\cdot 5 = -9\cdot n^2 - 15\cdot n = -9\cdot n^2 - 15\cdot n |
5,768 | (x + 1) (x + 1) = (x + 1) (x + 1) = x^2 + 2 x + 1^2 |
18,485 | (x \cdot e^{i \cdot 0})^3 = \left(x \cdot e^{i \cdot 2 \cdot \pi}\right)^3 = x^2 \cdot x |
23,034 | 9/90 \cdot 21/90 = \dfrac{7}{300} |
17,768 | d + d \cdot 3/2 = d \cdot 5/2 |
10,024 | u^Z Y x = (u^Z Y x)^Z = x^Z Y^Z u = -x^Z Y u |
-3,899 | \frac{y^4\cdot 14}{6y^3} = 14/6 \frac{y^4}{y^3} |
-10,437 | 10/(r*80) = \dfrac{1}{16*r}*2*\frac55 |
5,090 | \sin{x} = 2\cdot \sin{\frac{x}{2}}\cdot \cos{\frac{1}{2}\cdot x} |
-11,954 | 1/4 = s/(4\pi)\cdot 4\pi = s |
-1,077 | 1/7\cdot 2/(\dfrac{1}{5}\cdot 8) = \frac27\cdot \tfrac{1}{8}\cdot 5 |
21,699 | x + b + c = c + x + b |
-26,584 | x^2 \cdot 3 + 147 \cdot (-1) = 3 \cdot (49 \cdot (-1) + x^2) |
-1,077 | 2*1/7/(1/5*8) = \frac{2}{7}*\frac{5}{8} |
35,817 | L \cdot X \cdot 2 \cdot L = L \cdot X \cdot 2 \cdot L |
42,910 | -\operatorname{im}{(z)} = \operatorname{im}{(\overline{z})} |
11,638 | 1^3 + 4^3 = \left(1 + 4\right) \cdot \left(1^2 - 4 + 4^2\right) = 5 \cdot 13 |
8,756 | 6 \lt -x + 3 \Rightarrow x < -3 |
5,072 | 64! \cdot 65 \cdot \cdots \cdot 70 = 70! |
11,167 | 3 \cdot (-1) + n^2 + n \cdot 3 + 2 - 3 \cdot n = n^2 + (-1) |
-18,326 | \dfrac{t\cdot 7 + t^2}{t \cdot t + t\cdot 4 + 21\cdot (-1)} = \frac{t\cdot (7 + t)}{(t + 7)\cdot (t + 3\cdot \left(-1\right))} |
18,917 | 280 = 5\cdot {8 \choose 5} |
21,619 | \dfrac16 \cdot 8.5 \cdot 6 \cdot 7/2 = \frac{59.5}{2} \cdot 1 = 29.75 |
33,852 | 3^2\cdot 7\cdot 17 = 1071 |
33,755 | 0 = 2 + \sqrt{4}\Longrightarrow 2 = \sqrt{4} |
-5,855 | \frac{3}{6 + q \cdot q + 5\cdot q} = \dfrac{1}{(q + 2)\cdot (3 + q)}\cdot 3 |
12,555 | \ln(k)/2 = \ln(k^{\frac{1}{2}}) |
6,785 | \cos^{-\frac{4}{x^2}}(x) = (1 - \sin^2\left(x\right))^{-\frac{2}{x x}} = (1 - \frac{1}{\csc^2\left(x\right)})^{\csc^2(x)} |
4,854 | \frac{1}{2^n} n! \frac{2^{n + 1}}{(n + 1)!} = \frac{2}{n + 1} |
24,988 | \tfrac{1}{(1 + n) \cdot (1 + n)} + 1 = \dfrac{1}{\left(n + 1\right)^2}\cdot \left((n + 1)^2 + 1\right) |
1,619 | \tan{\dfrac{1}{4}*\pi} = 1 |
46 | 4^x - 1^x = 4^x + \left(-1\right) |
13,326 | (3\cdot (-1) + k \cdot k\cdot 4)/4 = -\frac{3}{4} + k \cdot k |
-2,245 | -1/11 + \dfrac{1}{11}5 = 4/11 |
6,776 | (x + (-1)) \cdot (x + 2) \cdot (3 + x^2 - x) - 5 \cdot x + 7 = x^4 + 1 |
18,120 | 6 = \frac{1}{\left(3 + 2\times (-1)\right)!}\times 3! |
6,700 | m*2 + 3*(-1) = m + 2*\left(-1\right) + m + (-1) |
-28,999 | (1096.5 - 382.5)/2 = 357 |
21,843 | 1 = \frac12 + \frac13 + \frac16 |
32,187 | 4(126) = 504 |
-23,703 | 1/6\cdot 5/4 = \frac{5}{24} |
34,378 | m! = (m + \left(-1\right))\cdot (((-1) + m)! + (2\cdot (-1) + m)!) |
4,733 | \overline{y_2\cdot y_1} = \overline{y_2}\cdot \overline{y_1} |
13,967 | \frac{5\cdot 1/6}{36} = \frac{5}{216} |
5,098 | \tan(\frac{z}{2}) = \frac{\sin(z)}{1 + \cos(z)} = (1 - \cos\left(z\right))/\sin\left(z\right) |
14,263 | 6 = 2 \cdot k_1 \cdot k_2 \Rightarrow 3 = k_1 \cdot k_2 |
29,501 | E[XY] = E[X] E[Y] |
-27,772 | \dfrac{d}{dx} \left[-4\cot(x) \right]= -4\dfrac{d}{dx} \cot(x) = 4\csc^2(x) |
19,203 | c_{n+2} - c_{n+1}\cdot 2 + x = -(-x + c_{n+1}) + c_{n+2} - c_{n+1} |
22,962 | |x_n + 2\cdot (-1)| = |x_n + 2 + 4\cdot \left(-1\right)| \leq |x_n + 2| + 4 |
4,107 | \zeta_j^2 + 2 + \dfrac{1}{\zeta_j^2} = (\zeta_j + 1/(\zeta_j)) \cdot (\zeta_j + 1/(\zeta_j)) |
28,707 | 4 + 8 + 2\cdot (-1) = 10 |
-29,138 | -5 = 5*0 - 5 |
24,732 | \frac{1}{k + 2 \cdot (-1)} - \dfrac{1}{k + 2} = \frac{4}{4 \cdot \left(-1\right) + k^2} |
-1,689 | \pi/3 - \pi \cdot 11/6 = -\pi \cdot 3/2 |
28,926 | 2 + 4\times (2 + 3\times (2 + 2)) = 58 |
-12,932 | \frac{6}{26} = \dfrac{3}{13} |
49 | 3^{1/3} = (\frac37)^{1/3}*7^{1/3} |
27,715 | 49^y = (7^2)^y = 7^{2 \cdot y} |
20,948 | 16^{\tfrac13} = 2^{1/3}*2 |
-9,829 | -0.44 = -\frac{1}{10}*4 = -\frac{11}{25} |
46,068 | 3/4 = \dfrac{1}{4} 3 |
11,905 | 1 = 12\cdot z + y\cdot 5 \Rightarrow z = -2,y = 1 |
-20,407 | (-s\cdot 40 + 12)/((-24)\cdot s) = 4/4\cdot \tfrac{1}{(-6)\cdot s}\cdot (3 - s\cdot 10) |
26,177 | z = z^{1/2}*2 \Rightarrow z = 4 |
-15,991 | 4/10 \cdot 10 - 6 \cdot 6/10 = 4/10 |
7,439 | \frac{1}{52} = 51\cdot 1/52/51 |
19,067 | 2.5 = 4 \cdot 1/4 + \dfrac14 + 2 \cdot \frac14 + 1/4 \cdot 3 |
26,043 | 2\cdot E\cdot C = E\cdot C + C\cdot E |
1,102 | \left(h + b + c\right)^2 - h^2 + b^2 + c^2 = \left(c\cdot h + h\cdot b + b\cdot c\right)\cdot 2 |
1,501 | \frac{-f^{k + 1} + 1}{1 - f} = 1 + f + f^2 + f^2 \cdot f + \dots + f^k |
20,961 | a\times a/a = a |
-6,410 | \frac{1}{8 \cdot (-1) + q \cdot 2} \cdot 5 = \frac{5}{(q + 4 \cdot (-1)) \cdot 2} |
-19,025 | 1/5 = \dfrac{H_q}{9*\pi}*9*\pi = H_q |
-29,627 | \frac{\mathrm{d}}{\mathrm{d}y} (y^4\cdot 2 + y^3 + y^2\cdot 3) = y\cdot 6 + 8\cdot y^3 + y^2\cdot 3 |
7,873 | \cos(\vartheta_2) = \cos(\vartheta_1) \Rightarrow \vartheta_1 = \vartheta_2 |
-1,856 | \frac{\pi}{4} + \pi \cdot \frac{7}{12} = \frac16 \cdot 5 \cdot \pi |
478 | -D\cdot 2/5 + D = 4 \Rightarrow 20/3 = D |
19,932 | -\cos{y} = \int \sin{y}\,\text{d}y |
188 | 30 \cdot (-1) + 18 + 18 = 6 |
4,427 | (3(-1) + z) (2(-1) + z) = 6 + z^2 - z\cdot 5 |
-10,418 | -\frac{25}{20 n} = 5/5 (-5/(4n)) |
-5,442 | \dfrac{1}{10^8}30.6 = \dfrac{1}{10^8}30.6 |
-15,597 | \tfrac{f}{\frac{1}{\frac{1}{f^6}\cdot \dfrac{1}{J^6}}}\cdot 1/J = \frac{1}{J^6\cdot f^6}\cdot f\cdot 1/J |
-6,298 | \frac{1}{n \cdot n + n\cdot 7 + 18\cdot \left(-1\right)} = \dfrac{1}{(n + 2\cdot (-1))\cdot (9 + n)} |
20,461 | 0 = x = 2 \cdot x |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.