id
int64
-30,985
55.9k
text
stringlengths
5
437k
-4,460
\dfrac{-2*x + 1}{x * x - x + 20*(-1)} = -\dfrac{1}{4 + x} - \frac{1}{5*(-1) + x}
-25,312
\frac{\mathrm{d}}{\mathrm{d}x} (\frac{1}{x}*\cos{x}) = \frac{1}{x^2}*(-x*\sin{x} - \cos{x})
11,763
ef dc = ed cf
3,663
\frac{12}{25}*11/24 = \frac{11}{50}
-15,171
\frac{1}{\frac{1}{s^{16}} \cdot (s^5 \cdot y)^2} = \tfrac{s^{16}}{y \cdot y \cdot s^{10}}
-7,703
\frac{1}{3 i - 5} (-3 - i*5) = \frac{1}{-5 - i*3} (-5 - 3 i) \dfrac{1}{-5 + i*3} (-3 - 5 i)
5,287
\frac{1}{12}(n^2 \cdot 3 + n^4 + 8n \cdot n) = \tfrac{1}{12}n^4 + 11/12 n^2
13,893
(1 + 4)^x + (-1) = (-1) + 5^x
4,404
11^2 + 3^2 = 9^2 + 7^2
6,553
-\frac{8}{\left(-6\right)^3} = \frac{1}{27}
27,491
H_1/F + H_2/F = (H_1 + H_2)/F
5,220
( 2 \cdot (a + 5), \left(5 + a\right) \cdot 3, 17) = ( 10 + 2 \cdot a, 3 \cdot a + 15, 17)
6,226
256 * 256 * 256 - 255^3 = 195841 = 22 * 22^2 + 57^3 = 9^3 + 58^3
6,394
E[X^\complement] = X^\complement
-16,905
-3\cdot n = -3\cdot n\cdot 3\cdot n + -3\cdot n\cdot 5 = -9\cdot n^2 - 15\cdot n = -9\cdot n^2 - 15\cdot n
5,768
(x + 1) (x + 1) = (x + 1) (x + 1) = x^2 + 2 x + 1^2
18,485
(x \cdot e^{i \cdot 0})^3 = \left(x \cdot e^{i \cdot 2 \cdot \pi}\right)^3 = x^2 \cdot x
23,034
9/90 \cdot 21/90 = \dfrac{7}{300}
17,768
d + d \cdot 3/2 = d \cdot 5/2
10,024
u^Z Y x = (u^Z Y x)^Z = x^Z Y^Z u = -x^Z Y u
-3,899
\frac{y^4\cdot 14}{6y^3} = 14/6 \frac{y^4}{y^3}
-10,437
10/(r*80) = \dfrac{1}{16*r}*2*\frac55
5,090
\sin{x} = 2\cdot \sin{\frac{x}{2}}\cdot \cos{\frac{1}{2}\cdot x}
-11,954
1/4 = s/(4\pi)\cdot 4\pi = s
-1,077
1/7\cdot 2/(\dfrac{1}{5}\cdot 8) = \frac27\cdot \tfrac{1}{8}\cdot 5
21,699
x + b + c = c + x + b
-26,584
x^2 \cdot 3 + 147 \cdot (-1) = 3 \cdot (49 \cdot (-1) + x^2)
-1,077
2*1/7/(1/5*8) = \frac{2}{7}*\frac{5}{8}
35,817
L \cdot X \cdot 2 \cdot L = L \cdot X \cdot 2 \cdot L
42,910
-\operatorname{im}{(z)} = \operatorname{im}{(\overline{z})}
11,638
1^3 + 4^3 = \left(1 + 4\right) \cdot \left(1^2 - 4 + 4^2\right) = 5 \cdot 13
8,756
6 \lt -x + 3 \Rightarrow x < -3
5,072
64! \cdot 65 \cdot \cdots \cdot 70 = 70!
11,167
3 \cdot (-1) + n^2 + n \cdot 3 + 2 - 3 \cdot n = n^2 + (-1)
-18,326
\dfrac{t\cdot 7 + t^2}{t \cdot t + t\cdot 4 + 21\cdot (-1)} = \frac{t\cdot (7 + t)}{(t + 7)\cdot (t + 3\cdot \left(-1\right))}
18,917
280 = 5\cdot {8 \choose 5}
21,619
\dfrac16 \cdot 8.5 \cdot 6 \cdot 7/2 = \frac{59.5}{2} \cdot 1 = 29.75
33,852
3^2\cdot 7\cdot 17 = 1071
33,755
0 = 2 + \sqrt{4}\Longrightarrow 2 = \sqrt{4}
-5,855
\frac{3}{6 + q \cdot q + 5\cdot q} = \dfrac{1}{(q + 2)\cdot (3 + q)}\cdot 3
12,555
\ln(k)/2 = \ln(k^{\frac{1}{2}})
6,785
\cos^{-\frac{4}{x^2}}(x) = (1 - \sin^2\left(x\right))^{-\frac{2}{x x}} = (1 - \frac{1}{\csc^2\left(x\right)})^{\csc^2(x)}
4,854
\frac{1}{2^n} n! \frac{2^{n + 1}}{(n + 1)!} = \frac{2}{n + 1}
24,988
\tfrac{1}{(1 + n) \cdot (1 + n)} + 1 = \dfrac{1}{\left(n + 1\right)^2}\cdot \left((n + 1)^2 + 1\right)
1,619
\tan{\dfrac{1}{4}*\pi} = 1
46
4^x - 1^x = 4^x + \left(-1\right)
13,326
(3\cdot (-1) + k \cdot k\cdot 4)/4 = -\frac{3}{4} + k \cdot k
-2,245
-1/11 + \dfrac{1}{11}5 = 4/11
6,776
(x + (-1)) \cdot (x + 2) \cdot (3 + x^2 - x) - 5 \cdot x + 7 = x^4 + 1
18,120
6 = \frac{1}{\left(3 + 2\times (-1)\right)!}\times 3!
6,700
m*2 + 3*(-1) = m + 2*\left(-1\right) + m + (-1)
-28,999
(1096.5 - 382.5)/2 = 357
21,843
1 = \frac12 + \frac13 + \frac16
32,187
4(126) = 504
-23,703
1/6\cdot 5/4 = \frac{5}{24}
34,378
m! = (m + \left(-1\right))\cdot (((-1) + m)! + (2\cdot (-1) + m)!)
4,733
\overline{y_2\cdot y_1} = \overline{y_2}\cdot \overline{y_1}
13,967
\frac{5\cdot 1/6}{36} = \frac{5}{216}
5,098
\tan(\frac{z}{2}) = \frac{\sin(z)}{1 + \cos(z)} = (1 - \cos\left(z\right))/\sin\left(z\right)
14,263
6 = 2 \cdot k_1 \cdot k_2 \Rightarrow 3 = k_1 \cdot k_2
29,501
E[XY] = E[X] E[Y]
-27,772
\dfrac{d}{dx} \left[-4\cot(x) \right]= -4\dfrac{d}{dx} \cot(x) = 4\csc^2(x)
19,203
c_{n+2} - c_{n+1}\cdot 2 + x = -(-x + c_{n+1}) + c_{n+2} - c_{n+1}
22,962
|x_n + 2\cdot (-1)| = |x_n + 2 + 4\cdot \left(-1\right)| \leq |x_n + 2| + 4
4,107
\zeta_j^2 + 2 + \dfrac{1}{\zeta_j^2} = (\zeta_j + 1/(\zeta_j)) \cdot (\zeta_j + 1/(\zeta_j))
28,707
4 + 8 + 2\cdot (-1) = 10
-29,138
-5 = 5*0 - 5
24,732
\frac{1}{k + 2 \cdot (-1)} - \dfrac{1}{k + 2} = \frac{4}{4 \cdot \left(-1\right) + k^2}
-1,689
\pi/3 - \pi \cdot 11/6 = -\pi \cdot 3/2
28,926
2 + 4\times (2 + 3\times (2 + 2)) = 58
-12,932
\frac{6}{26} = \dfrac{3}{13}
49
3^{1/3} = (\frac37)^{1/3}*7^{1/3}
27,715
49^y = (7^2)^y = 7^{2 \cdot y}
20,948
16^{\tfrac13} = 2^{1/3}*2
-9,829
-0.44 = -\frac{1}{10}*4 = -\frac{11}{25}
46,068
3/4 = \dfrac{1}{4} 3
11,905
1 = 12\cdot z + y\cdot 5 \Rightarrow z = -2,y = 1
-20,407
(-s\cdot 40 + 12)/((-24)\cdot s) = 4/4\cdot \tfrac{1}{(-6)\cdot s}\cdot (3 - s\cdot 10)
26,177
z = z^{1/2}*2 \Rightarrow z = 4
-15,991
4/10 \cdot 10 - 6 \cdot 6/10 = 4/10
7,439
\frac{1}{52} = 51\cdot 1/52/51
19,067
2.5 = 4 \cdot 1/4 + \dfrac14 + 2 \cdot \frac14 + 1/4 \cdot 3
26,043
2\cdot E\cdot C = E\cdot C + C\cdot E
1,102
\left(h + b + c\right)^2 - h^2 + b^2 + c^2 = \left(c\cdot h + h\cdot b + b\cdot c\right)\cdot 2
1,501
\frac{-f^{k + 1} + 1}{1 - f} = 1 + f + f^2 + f^2 \cdot f + \dots + f^k
20,961
a\times a/a = a
-6,410
\frac{1}{8 \cdot (-1) + q \cdot 2} \cdot 5 = \frac{5}{(q + 4 \cdot (-1)) \cdot 2}
-19,025
1/5 = \dfrac{H_q}{9*\pi}*9*\pi = H_q
-29,627
\frac{\mathrm{d}}{\mathrm{d}y} (y^4\cdot 2 + y^3 + y^2\cdot 3) = y\cdot 6 + 8\cdot y^3 + y^2\cdot 3
7,873
\cos(\vartheta_2) = \cos(\vartheta_1) \Rightarrow \vartheta_1 = \vartheta_2
-1,856
\frac{\pi}{4} + \pi \cdot \frac{7}{12} = \frac16 \cdot 5 \cdot \pi
478
-D\cdot 2/5 + D = 4 \Rightarrow 20/3 = D
19,932
-\cos{y} = \int \sin{y}\,\text{d}y
188
30 \cdot (-1) + 18 + 18 = 6
4,427
(3(-1) + z) (2(-1) + z) = 6 + z^2 - z\cdot 5
-10,418
-\frac{25}{20 n} = 5/5 (-5/(4n))
-5,442
\dfrac{1}{10^8}30.6 = \dfrac{1}{10^8}30.6
-15,597
\tfrac{f}{\frac{1}{\frac{1}{f^6}\cdot \dfrac{1}{J^6}}}\cdot 1/J = \frac{1}{J^6\cdot f^6}\cdot f\cdot 1/J
-6,298
\frac{1}{n \cdot n + n\cdot 7 + 18\cdot \left(-1\right)} = \dfrac{1}{(n + 2\cdot (-1))\cdot (9 + n)}
20,461
0 = x = 2 \cdot x