id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
15,997 | 0 = -B + x \implies x^2 - B^2 = 0 |
16,915 | \sin{x/2} = \cos{\frac12*(-x + \pi)} |
13,239 | 2 + \mu \cdot \mu + y^2 + z^2\cdot 2 + 2\cdot \mu\cdot z - y\cdot 2 + z\cdot 2 = (z + \mu)^2 + (\left(-1\right) + y)^2 + \left(1 + z\right)^2 |
-4,594 | 9*(-1) + y^2 = \left(3*(-1) + y\right)*(y + 3) |
16,085 | h + b = b + h \Rightarrow [h,b] |
18,837 | 80^4 = 5^4*2^{16} |
11,840 | (5^{1/2} - 1)/4 = \cos{\pi*2/5} |
-16,340 | 6*80^{1/2} = (16*5)^{1/2}*6 |
40,327 | \frac{\text{d}}{\text{d}x} |x| = \frac1x|x| |
25,536 | n + 2n + 3n + \cdots + n^2 \approx nn^2 = n^3 |
3,794 | 52!/(13!\cdot 39!) = 52!/(13!\cdot 39!) |
3,407 | (-a)^{2}-1=(a)^{2}-1 |
23,476 | e^{\frac{3*\pi*i}{4}}*e^{\pi*i/4} = e^{\pi*i} = -1 |
-21,609 | \sin\left(-π\cdot 5/6\right) = -0.5 |
28,124 | 2\cdot \cos(o)\cdot \sin(o) = \sin(o\cdot 2) |
32,085 | \left(\tan^2{x} = \dfrac{1}{\cos^2{x}} \times \sin^2{x}\Longrightarrow \frac{1}{\tan^2{x}} = \tfrac{1}{\sin^2{x}} \times \cos^2{x}\right)\Longrightarrow \frac{\sec^2{x}}{\tan^2{x}} = \frac{\cos^2{x}}{\sin^2{x}} \times \sec^2{x} = \dfrac{1}{\sin^2{x}} |
-5,700 | \dfrac{2}{(n + 9(-1)) \left(7(-1) + n\right)} = \dfrac{2}{n^2 - n \cdot 16 + 63} |
14,111 | A \cdot D \cdot v = D \cdot A \cdot v |
34,841 | 1 = -377\cdot 1597 + 610\cdot 987 |
11,681 | 0\left(-1\right) + 0^5 = 0 |
18,824 | A^{2\cdot l} = A^l\cdot A^l |
-26,474 | \left(-b + a\right)^2 = a^2 - b \cdot a \cdot 2 + b^2 |
20,834 | \frac{1}{\dfrac{1}{X}} = X |
9,085 | \frac{4}{7} = \dfrac{4}{7} |
-25,871 | z^3 = z^5/(z z) |
18,392 | 6\cdot x^2 + x\cdot z\cdot 11 - 35\cdot z \cdot z = (z\cdot 7 + x\cdot 2)\cdot \left(-5\cdot z + x\cdot 3\right) |
4,160 | k + 1 = \dfrac{1}{k!}\cdot (1 + k)! |
3,240 | \dfrac12 \cdot (21 + 7) = 14 |
9,627 | 3 = 3 + b \Rightarrow b = 0 |
-10,548 | 60 = 150 - 12*z + 60*(-1) = -12*z + 90 |
30,987 | (c + b)^2 = c^2 + 2 \cdot c \cdot b + b^2 = c \cdot c + 0 \cdot c \cdot b + b^2 = c \cdot c + b^2 |
8,942 | \dfrac12 (-\sqrt{3} i - 1) + \dfrac12 \left(\sqrt{3} i - 1\right) = -1 |
16,190 | 90000 + 27216 \cdot (-1) = 62784 |
-5,668 | \frac{1}{3*(p + 2*(-1))}*5 = \frac{5}{p*3 + 6*(-1)} |
33,030 | 0 = \tan^{-1}(0/\left(\sqrt{2}\right)) |
5,976 | (9 + 1) \cdot \ln(9 + 1) + 9 \cdot (-1) = 10 \cdot \ln\left(10\right) + 9 \cdot (-1) = 10 + 9 \cdot \left(-1\right) = 1 |
36,311 | a^n*a^m = a^{n + m} |
28,364 | -\frac{1}{(1 - z)^2} = -\frac{1}{(-z + 1)^2} |
-9,208 | 20 a^3 = a*2*2*5 a a |
1,846 | \frac{h_2}{d \cdot h_1} = 1/(h_1) \cdot h_2/d |
-6,712 | \tfrac{3}{10} + \frac{2}{100} = \frac{2}{100} + \frac{30}{100} |
23,084 | \frac{5}{16} = \dfrac{1}{16} + 1/6 + \tfrac{1}{12} |
-26,577 | (8 + x) \cdot (x + 8 \cdot (-1)) = x^2 - 8^2 |
24,076 | f^2 - g \cdot g = (f - g)\cdot (f + g) |
31,700 | 6^3 = 210 + 6 |
4,622 | \sum_{x=1}^\infty a*x*(5 + 2*(-1))^x = \sum_{x=1}^\infty a*x*3^x |
20,305 | 36 = 3^4 - -1^4*3 + 2^4*3 |
47,225 | 15=3\cdot 5 |
17,176 | {1 + k \choose k + \left(-1\right)} = {k + 1 \choose 2} |
-10,607 | 4/4\cdot (-\frac{1}{l^2}\cdot (2 + 5\cdot l)) = -\frac{20\cdot l + 8}{4\cdot l^2} |
-20,951 | \dfrac{1}{k*14}(8\left(-1\right) + k*2) = 2/2 (k + 4(-1))/(7k) |
-3,647 | \frac{1}{s^2}\cdot s^4 = s\cdot s\cdot s\cdot s/\left(s\cdot s\right) = s^2 |
-18,458 | x + 2 = 10\cdot \left(3\cdot x + 6\cdot \left(-1\right)\right) = 30\cdot x + 60\cdot \left(-1\right) |
4,623 | 8 = -\left(4\cdot (-1) + 5\right) \cdot \left(4\cdot (-1) + 5\right) + 9 |
35,965 | b+a=a+b |
35,823 | {100 \choose 48} = {100 \choose 52} = {100 \choose 50} \cdot \frac{2450}{51 \cdot 52} \cdot 1 |
18,135 | (180 + z^2 + 20 z) (z^2 - z \cdot 2 + 18 \left(-1\right)) = z^4 + z^3 \cdot 18 + z^2 \cdot 122 - 720 z + 3240 (-1) |
15,165 | \dfrac{1}{(-D/x + 1)*x} = \frac{1}{-D + x} |
15,888 | 2017 = 44^2 + 9^2 = (-44)^2 + 9^2 = \ldots |
28,862 | 417*31/1000 = 31*0.417 |
7,135 | 1 > \frac13 \cdot p\Longrightarrow 3 > p |
-9,200 | -k \cdot 72 + 36 \cdot (-1) = -k \cdot 2 \cdot 2 \cdot 2 \cdot 3 \cdot 3 - 2 \cdot 2 \cdot 3 \cdot 3 |
-19,275 | 5\cdot 1/9/(6\cdot \dfrac15) = 5/9\cdot 5/6 |
16,211 | (1 + z)^{1 + z} = 1 + (1 + z) z + \dotsm = 1 + z + z z + \dotsm |
28,313 | 28/p = \tfrac7p\cdot 4/p = \frac7p |
-6,687 | 4/10 + 4/100 = 4/100 + \frac{40}{100} |
2,867 | \frac{1/32}{\tfrac{1}{32}5 + 5/32}5 = \frac12 |
36,950 | A \cdot T_2 + T_1 \cdot A = A \cdot (T_2 + T_1) |
16,083 | \tfrac1m*(m + 1) = \frac{1}{m} + 1 |
35,517 | \left(1 + q + (-1)\right)^m = q^m |
9,832 | \frac{2!}{2^2} = 2*\frac12/2 = \dfrac12 |
3,002 | 2 \cdot \sqrt{11} = -(-\sqrt{11} + \sqrt{5} \cdot 2) + \sqrt{5} \cdot 2 + \sqrt{11} |
4,835 | \cos(x) \cdot x = \sin\left(x\right) \Rightarrow \tan(x) = x |
31,753 | R \cdot x \cdot y = x \cdot R \cdot y |
31,103 | a^{k + 1} = a^{k + 1} |
32,343 | (1 + 0\cdot (-1))\cdot (-a + b) = -a + b |
-474 | \frac{1}{3}\times 95\times π - π\times 30 = \frac53\times π |
29,413 | 130 = 133 + 3\cdot (-1) |
-1,716 | \pi \cdot 23/12 - \frac{1}{12} \cdot \pi = 11/6 \cdot \pi |
2,217 | -1^5*{4 \choose 3} + 4^5 - {4 \choose 1}*3^5 + 2^5*{4 \choose 2} = \frac{4}{2!}*5! |
-20,923 | \frac22\cdot \frac{1}{-9}\cdot (-2\cdot n + 8) = \dfrac{1}{-18}\cdot (16 - 4\cdot n) |
36,738 | L \cdot A = A \cdot L |
7,329 | I_n\cdot b^2 + I_n\cdot a^2 = I_n\cdot (b \cdot b + a^2) |
-20,424 | \frac{1}{45}\cdot (5\cdot x + 25) = \tfrac15\cdot 5\cdot \frac{1}{9}\cdot (x + 5) |
18,062 | n^2 + n + 1 = (n + 1) \cdot (n + 1) - n |
9,427 | (3y)^{1/2} * (3y)^{1/2} = y*3 |
28,118 | \frac{12!}{5!\cdot 4!\cdot 3!} = {12 \choose 5}\cdot {7 \choose 4} |
576 | x - g = (-g*4 + 4*x)/4 |
11,401 | \tfrac{1}{31} + 1/31\cdot 30/30 = 2/31 |
-26,577 | -8^2 + y^2 = \left(y + 8\right)\times (8\times (-1) + y) |
8,021 | 4096 = 64*64 |
364 | (r + 2\times r)\times \cot(\dfrac14\times \pi) = 3\times r |
-435 | (e^{7\cdot i\cdot π/4})^5 = e^{7\cdot i\cdot π/4\cdot 5} |
-7,527 | \frac{1}{-i + 1} \cdot \left(-1 + i \cdot 5\right) = \frac{1}{1 - i} \cdot (i \cdot 5 - 1) \cdot \dfrac{1 + i}{1 + i} |
-389 | \frac{4! \cdot \frac{1}{1!}}{\frac{1}{6!} \cdot 9!} = \dfrac{\frac{1}{3! \cdot \left(4 + 3 \cdot (-1)\right)!} \cdot 4!}{9! \cdot \frac{1}{\left(3 \cdot (-1) + 9\right)! \cdot 3!}} |
13,525 | 2 \cdot i - 5 \cdot (2 + i) + 1 = -9 - i \cdot 3 |
16,676 | \sqrt{x^2} + \sqrt{x} = x + \sqrt{x} = \sqrt{x} (\sqrt{x} + 1) |
35,714 | -X + z = z - X |
14,983 | \mathbb{E}(z_3 + z_1 + z_2) = \mathbb{E}(z_1) + \mathbb{E}(z_2) + \mathbb{E}(z_3) |
4,318 | 2*\sin(1) = 1.683*\ldots \gt \frac85 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.