id
int64
-30,985
55.9k
text
stringlengths
5
437k
-6,736
\frac{9}{100} + 9/10 = \dfrac{9}{100} + \frac{90}{100}
5,579
m*4 + 2 = (1 + 2 m)*2
22,620
(-b + a) \times \left(a^{k + \left(-1\right)} + a^{k + 2 \times \left(-1\right)} \times b + a^{k + 3 \times (-1)} \times b \times b + \cdots + a \times a \times b^{3 \times \left(-1\right) + k} + b^{k + 2 \times \left(-1\right)} \times a + b^{(-1) + k}\right) = a^k - b^k
34,988
(2 \cdot 2 + 1^2)^{1 / 2} = 5^{\dfrac{1}{2}}
10,260
\tan^{-1}\left(1\right) = \frac14\pi
26,689
1 + \lambda * \lambda - \lambda*2 = (\lambda + (-1)) * (\lambda + (-1))
-1,452
-\frac{1}{4}*\dfrac{1}{8}3 = \left((-1)*1/4\right)/(8*1/3)
16,034
1111 = 1 + x + x^2 + x x^2 = x^{12}
-22,941
63/54 = \frac{9 \cdot 7}{6 \cdot 9}
34,896
24 = \left(-1\right) + \dfrac{100}{4}
18,933
\sin(3\cdot x) = \sin\left(2\cdot x + x\right) = \sin(2\cdot x)\cdot \cos(x) + \cos(2\cdot x)\cdot \sin(x)
35,035
|16 - x*2| = 5\Longrightarrow x = 5.5, 10.5
-509
-\pi*26 + \pi*\frac{323}{12} = \pi*11/12
-4,122
\dfrac78 \cdot \frac{m^3}{m^3} = \frac{7 \cdot m^3}{8 \cdot m^3}
29,354
c \gt -1 \Rightarrow c + 1 > 0
-18,347
\frac{1}{32 + k^2 + k \cdot 12} \cdot \left(k^2 + 4 \cdot k\right) = \frac{(k + 4) \cdot k}{(4 + k) \cdot (8 + k)}
16,079
(x + t)^1 = x + t = x^1 + t^1
-5,323
2.4\cdot 10^{3 - -2} = 10^5\cdot 2.4
8,704
\cos(x - y) = \sin{y}\cdot \sin{x} + \cos{y}\cdot \cos{x}
21,776
w' \cdot I + I \cdot w = I \cdot (w + w')
10,159
\frac{1}{5}*(5*y + 1) = 1/5 + y
3,212
x \cdot \Sigma \cdot x^R = x \cdot \Sigma \cdot x^R \cdot x \cdot \Sigma \cdot x^R = x \cdot \Sigma^2 \cdot x^R
7,718
\frac{x}{y} \cdot x \cdot y = \dfrac{x}{y} \cdot y \cdot x
50,003
15 = 5 + 0 + 1 + 2 + 3 + 4
24,051
M'_{ii}=M_{ii}
-24,496
1 + \frac166 = 1 + 1 = 1 + 1 = 2
29,249
2^n - 2^{2 \cdot (-1) + n} \cdot ((-1) + n) + 2^{4 \cdot (-1) + n} \cdot \left(2 \cdot \left(-1\right) + n\right) \cdot \left(n + 3 \cdot (-1)\right)/2! - ... = 1 + n
-25,765
\frac{d}{dp} (-\dfrac3p) = \frac{1}{p^2} \cdot 3
1,320
\dfrac{\sin(z)}{z} = \dfrac1z(z - z^3/6 + \cdots) = 1 - \frac{z^2}{6} + \cdots
39,041
7*12 + 13(-1) = 71
3,422
e^{-\int_W^T s*r\,\mathrm{d}s} = e^{-\int_W^T s*r\,\mathrm{d}s}
4,891
\frac{1}{\dfrac1a\times c} = a/c
16,407
\frac{1}{\cos^2\left(y\right)} = 1 + \tan^2(y)
30,361
\frac{1}{100}84*83/99 = 6972/9900 \approx 0.704
11,621
0 = x^4 + 6*x^2 + 25 = \left(x^2 + 5\right)^2 - 4*x * x = (x^2 - 2*x + 5)*(x^2 + 2*x + 5)
29,611
(-2\cdot 3 + 2) + \left(2\cdot (-1) + 3\right)\cdot 3 - 1\cdot (2\cdot (-1) + 1) = 0
12,565
x^{5/2} = \frac{1}{x^{\frac12}}\cdot x^3
-20,418
-\frac25\cdot \frac{9}{9} = -\frac{18}{45}
-10,414
\frac{1}{r*10 + 10 (-1)} 60 = \dfrac{10}{10}*\frac{1}{(-1) + r} 6
20,971
\frac{\mathrm{d}}{\mathrm{d}y} \cosh(y) = \sinh(y)
40,600
i^2 \cdot i = i^{2 + 1} = i^2\cdot i = -i = -i
5,020
|x| = (x \times x)^{\frac{1}{2}} \lt (x^2 + 1)^{\frac{1}{2}}
8,351
\left(b + a\right)/d = \frac{1}{d}b + \frac{1}{d}a
-24,591
4*4 4 = 4*16 = 64
21,809
\frac{\sin^2{z}}{1 + \sin^2{z}} = 1 - \frac{1}{1 + \sin^2{z}} = 1 - \tfrac{\sec^2{z}}{2 \cdot \tan^2{z} + 1}
-2,458
4 \cdot \sqrt{7} - \sqrt{7} \cdot 2 = -\sqrt{7} \cdot \sqrt{4} + \sqrt{16} \cdot \sqrt{7}
4,869
\cos{z} = \sin(-z + \frac{π}{2})
-12,157
\frac35 = \dfrac{t}{10 \cdot \pi} \cdot 10 \cdot \pi = t
16,904
7^{5 + 10 \cdot 427} = \left(7^{10}\right)^{427} \cdot 7^5
5,713
1 - y^2 + 1 = -y \cdot y + 2
-18,948
3/10 = A_s/(64\cdot \pi)\cdot 64\cdot \pi = A_s
-22,379
42 + x * x + 13*x = (x + 6)*(x + 7)
16,739
A\times A\times B = -A\times B\times A = B\times A\times A
1,854
|p| E_2 |x| E_1 = |p| |x| E_2 E_1
24,028
\sin^2{y/2} = \frac{1}{2} \cdot \left(1 - \cos{y}\right) = (1 - \sqrt{1 - \sin^2{y}})/2
9,000
\sqrt{y^2 - 5y + 4} = \sqrt{\left(y + (-1)\right) (y + 4(-1))} = \sqrt{y + (-1)} \sqrt{y + 4(-1)}
-6,352
\frac{3}{4\cdot r + 8\cdot \left(-1\right)} = \frac{3}{4\cdot (2\cdot \left(-1\right) + r)}
29,073
\lim_{x \to \infty} (1 - \frac{1}{x})^x = \lim_{x \to \infty} (\frac1x\cdot (x + (-1)))^x = \lim_{x \to \infty} (\frac{1}{x + (-1)}\cdot x)^{-x} = \lim_{x \to \infty} (1 + \frac{1}{x + (-1)})^{-x}
10,175
2 \cdot \left(a \cdot a + d^2\right) = (d + a)^2 + (-d + a)^2
47,886
\cos(A + G) + \cos\left(A - G\right) = 2*\cos{A}*\cos{G} = 2*\cos{\dfrac{1}{2}*(A + G + A - G)}*\cos{(A + G - A + G)/2}
32,407
-y + p \cdot p - y \cdot p = 0 \implies p = (y \pm \sqrt{y^2 + 4 \cdot y})/2
22,789
\frac{\mathrm{d}y}{\mathrm{d}z} \cdot \left(z + y^2\right) = 1\Longrightarrow \frac{\mathrm{d}z}{\mathrm{d}y} = z + y^2
-4,604
\frac{24\cdot (-1) + y\cdot 2}{y^2 - 3\cdot y + 10\cdot (-1)} = \frac{4}{y + 2} - \frac{2}{5\cdot \left(-1\right) + y}
-1,380
(1/7\cdot (-9))/(1/7\cdot (-9)) = -7/9\cdot (-9/7)
-23,220
5/9 = 1 - \tfrac19*4
55,290
2\implies 3
27,116
\left(h \cdot a + a^2 + h^2\right)/3 = ((a + h)/2) \cdot ((a + h)/2) + \left(h - a\right) \cdot \left(h - a\right)/12
-9,709
-\tfrac{1}{2} = -\dfrac24
18,282
\operatorname{E}(2 \operatorname{E}(r) r) = 2 \operatorname{E}(r) \operatorname{E}(r)
3,840
(\frac1a - x^2)/(\frac1a) = 1 - a*x * x
23,698
\tfrac{1}{6 \cdot 6 \cdot 6} \cdot {6 \choose 3} = 20/216 = 5/54
21,649
4*\tfrac{1}{5}/4 = \dfrac15
24,970
4^y = \left(2^2\right)^y = 2^{2y} = \left(2^y\right)^2
-18,964
3/5 = \frac{E_r}{4 \cdot \pi} \cdot 4 \cdot \pi = E_r
-22,206
g g - 12 g + 20 = (2 (-1) + g) (g + 10 (-1))
-5,463
\frac{2}{49 \cdot (-1) + k^2} = \frac{2}{\left(k + 7\right) \cdot (k + 7 \cdot (-1))}
-18,251
\frac{n^2 + n + 30 \cdot (-1)}{n \cdot 6 + n \cdot n} = \dfrac{1}{n \cdot \left(n + 6\right)} \cdot \left(6 + n\right) \cdot (5 \cdot \left(-1\right) + n)
8,816
a + b = a/b + \frac{b}{a} \lt a + b
18,355
2 \cdot 32 \cdot 4^4 + 8 \cdot 28 \cdot 4^4 = 73728
25,343
-8/2 + 3\cdot 3 = 9 + \dfrac12\cdot \left((-1)\cdot 8\right)
9,860
\frac12 \cdot (b \cdot b - d \cdot d) = \frac{1}{2} \cdot \left(b + d\right) \cdot (b - d)
30,007
5*\dfrac{1}{5}*18/2 = 9
7,636
(1 + l)^2 = 1 + 3 + 5 + \ldots + 2\cdot l + 1
7,039
\cos(-a + \pi/2) = \sin{a}
-3,061
\sqrt{7} \cdot 5 = \sqrt{7} \cdot (3 + 2)
32,038
1820 = {4 \choose 1} \cdot {(-1) + 12 + 4 \choose 12}
1,304
d^n\times d^m = d^{m + n}
12,113
3 \lt (1 + z^2 - 3*z)*z \implies 0 < z^3 - z^2*3 + z + 3*(-1)
-3,022
\left(2\cdot (-1) + 4\right)\cdot \sqrt{10} = \sqrt{10}\cdot 2
6,478
\{F\cdot S\cdot x,Q\cdot S\cdot F\} \Rightarrow S\cdot F\cdot Q = S\cdot F\cdot x
21,732
\dfrac16 = 1/3 - \dfrac{1}{6}
-7,979
(-54 + 12 \times i + 90 \times i + 20)/34 = \left(-34 + 102 \times i\right)/34 = -1 + 3 \times i
33,093
\frac{1}{Y \cdot X} = \tfrac{1}{X \cdot Y}
-18,353
\dfrac{6 \cdot n + n^2}{30 \cdot (-1) + n^2 + n} = \frac{(n + 6) \cdot n}{(n + 5 \cdot \left(-1\right)) \cdot (n + 6)}
11,041
\frac{g}{b^x\cdot h} = g\cdot b^{-x}/h
-1,080
1/(6\cdot (-5/9)) = (\dfrac{1}{5}\cdot (-9))/6
22,847
g_2 \cdot g_1 \cdot g_2 = g_2 \cdot g_1 \cdot g_2 = g_2 \cdot g_1 \cdot g_2
5,946
\sqrt{a \cdot a - 16 \cdot a + 48} = \sqrt{(a + 6 \cdot (-1))^2 + 12} \gt \sqrt{(a + 6 \cdot (-1))^2} = |a + 6 \cdot (-1)| = 6 - a
-4,883
10^{5*\left(-1\right) + 11}*0.49 = 10^6*0.49
16,915
\cos((-x + \pi)/2) = \sin(x/2)