id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
15,160 | \frac{4}{50}+\frac{4}{50}+\frac{4}{50}+\frac{4}{50}+\frac{3}{50} = \frac{19}{50} |
251 | 1/27 + \frac{1}{51}\cdot 3\cdot 26/27 = 43/459 |
31,666 | A \cdot p + s \cdot A = A \cdot (p + s) |
-20,962 | -\frac{50}{-90} = \frac59 (-10/(-10)) |
-23,475 | \frac{1}{14}\cdot 5 = \frac{5 / 7}{2}\cdot 1 |
21,961 | \mathbb{Z}_{28} = \left\{0, 2, 27, 4, 3, 5, 1, \dotsm\right\} |
45,528 | (-1) + 3 (-1) = -4 \neq 1 |
7,095 | \left(2/3\right)^3\times 1/3 = \dfrac{8}{81} |
6,318 | n \cdot {n + (-1) \choose (-1) + i} = {n \choose i} \cdot i |
693 | e^{i \times x} = 1 + x \times i/1! + (i \times x) \times (i \times x)/2! \times \cdots |
18,315 | \left(42 = \omega + 2\omega + \omega*3 + \omega*4 + \omega*5 + \omega*6 \Rightarrow 42 = \omega*21\right) \Rightarrow 2 = \omega |
-153 | \binom{7}{3} = \dfrac{7!}{(7 + 3 \cdot (-1))! \cdot 3!} |
707 | \frac{\partial}{\partial x} x^n = n \times x^{n + (-1)} |
3,326 | \frac{y z}{z y} = \frac{z}{z} y/y |
-11,553 | -3 + 5 - 16 \times i = 2 - 16 \times i |
22,179 | 0 = 1 - \cosh{d}\cdot \cos{d}\Longrightarrow \cos{d} - 1/\cosh{d} = 0 |
6,618 | v_2 - \frac{1}{v_2} = -1/\left(v_1\right) + v_1 \implies -v_1 + v_2 = -\frac{1}{v_1} + \frac{1}{v_2} |
35,669 | y_0 \cdot c = y_0 \cdot c |
7,540 | (xy)^{-1} = x^{-1}y^{-1} |
19,949 | s^2 + s + 1 = (s + 1/2)^2 + \frac{3}{4} |
2,604 | x^2 - y^2 = (x - y) (x^1 y^0 + x^0 y^1) = (x - y) \left(x + y\right) |
35,230 | 9! = 7!*3!*2!*3! |
8,207 | (x - y)\cdot (x^2 + x\cdot y + y \cdot y) = -y^3 + x^3 |
31,309 | \overline{g} + \overline{d} = \overline{g + d} |
-1,173 | \frac{1}{1/9 \cdot \left(-8\right)} \cdot ((-5) \cdot \tfrac19) = -\frac18 \cdot 9 \cdot (-5/9) |
28,697 | \frac{1}{6}\times(4.5+9+13.5+18+22.5+27)=15.75 |
-26,647 | 4 + 121 \cdot c^4 - 44 \cdot c^2 = (c^2 \cdot 11 + 2 \cdot (-1))^2 |
-22,269 | n^2 + 6n + 7(-1) = (n + (-1)) \left(n + 7\right) |
32,548 | (2 - 1/3)^2\cdot \frac{4}{9} + (-1 - 1/3)^2\cdot \frac{5}{9} = \frac{20}{9} |
32,110 | di = ci \Rightarrow c = d |
-8,811 | 27 = 9 \cdot 3 |
3,609 | 1 - \tfrac{3}{4}*\frac45 = \frac{1}{5}*2 |
30,340 | x = 20 + x + 20 \cdot (-1) |
20,885 | \tfrac{1}{-t + 1} = 1 + t + t \cdot t + \dotsm |
4,295 | \frac{\partial}{\partial z} e^{zd + \sinh(gz)} = (d + g\cosh(zg)) e^{zd + \sinh(gz)} |
26,893 | -2 \cdot x \cdot \left(-1/2\right) = x |
17,769 | \binom{5}{3}\times \binom{2}{2}\times 13\times 12 = 1560 |
12,878 | b \cdot y \cdot H = y \cdot H \cdot b |
6,655 | x^T D x = (x^T D x)^T = x^T D^T x = -x^T D x |
-23,114 | \frac138 (-4/3) = -32/9 |
28,930 | x \cdot \binom{\left(-1\right) + x}{\left(-1\right) + l} = l \cdot \binom{x}{l} |
-3,971 | \frac{1}{n^4} \times n = \dfrac{1}{n \times n \times n \times n} \times n = \dfrac{1}{n \times n \times n} |
-21,662 | -\frac{5}{11} = -\dfrac{5}{11} |
-21,013 | \frac{1}{x*4 + 4*(-1)}*\left(-x + 1\right) = -\dfrac{1}{4}*\frac{1}{\left(-1\right) + x}*(x + (-1)) |
8,550 | (x + z)*q = x*q + q*z |
-6,251 | \dfrac{3}{12 \cdot (-1) + 2 \cdot x} = \frac{1}{2 \cdot (6 \cdot (-1) + x)} \cdot 3 |
33,923 | (y + x) \left(y - x\right) = -x^2 + y^2 |
27,298 | ( g_1*g_2, h_2*h_1) = ( g_1*g_2, h_1*h_2) |
-2,501 | (1 + 3) \cdot \sqrt{5} = 4 \cdot \sqrt{5} |
25,434 | 3/z - z/2 = \frac3z - z/2 |
24,988 | 1 + \dfrac{1}{\left(x + 1\right) \cdot \left(x + 1\right)} = \frac{1}{(1 + x)^2} \cdot (\left(1 + x\right)^2 + 1) |
1,258 | ((x + (-1))\cdot (x + 4\cdot (-1)))^{1 / 2} = \left(\left(1 - x\right)\cdot (4 - x)\right)^{\dfrac{1}{2}} = (1 - x)^{1 / 2}\cdot (4 - x)^{\frac{1}{2}} |
29,374 | (n + 1)^2 = n^2 + 2\cdot n + 1 |
-24,771 | \dfrac{7\pi}{12}=\dfrac{3\pi}{12}+\dfrac{4\pi}{12} =\dfrac{\pi}{4}+\dfrac{\pi}{3} |
10,956 | z/y = 1/(1/z y) |
20,961 | b/b*b = b |
-27,266 | \sum_{n=1}^\infty \frac{1}{n} = \sum_{n=1}^\infty \frac{1}{n}\cdot (3 - 2)^n |
8,018 | 1 + x^3 \cdot 4 - x^2 \cdot 3 = -(2 \cdot x^5 - 4 \cdot x^3) + 2 \cdot x^5 - 3 \cdot x^2 + 1 |
3,596 | 1 - x^3 = (1 - x) \left(x^2 + 1 + x\right) |
28,645 | (1 + t)*\left(1 + \frac{1}{1 + t}\right) = 1 + t + 1 = 2 + t |
27,063 | (a + 1/2)^n + (b + \tfrac{1}{2})^n = \dfrac{1}{2^n} \cdot ((2 \cdot a + 1)^n + \left(2 \cdot b + 1\right)^n) |
8,484 | 651 = \binom{5}{2} \binom{7}{3} + \binom{19}{15} - \binom{5}{1} \binom{13}{9} |
-7,503 | \dfrac{45}{6} = \dfrac{15}{2} |
12,994 | D_1 = 1 \implies \mathbb{E}[D_1] = 1 |
17,557 | 2\cdot \sin\left(x\right)\cdot \cos(x) = \sin\left(x\cdot 2\right) |
20,881 | \frac{d}{dx} (z^3 \cdot 4) = 12 \cdot \frac{dz}{dx} \cdot z^2 |
6,658 | \cos\left(B*2\right) = (-1) + \cos^2(B)*2 |
2,158 | \left\{c, g, b\right\} = \left\{b, c, g\right\} |
13,233 | \int (1 + \cos(z))^3\,\mathrm{d}z = \frac{1}{4} \cdot (\sin(3 \cdot z)/3 + 6 \cdot \dfrac12 \cdot \sin(2 \cdot z) + 15 \cdot \sin(z) + 10 \cdot z) + c = \sin(3 \cdot z)/12 + \dfrac{1}{4} \cdot 3 \cdot \sin(2 \cdot z) + \frac{\sin(z)}{4} \cdot 15 + \frac{5}{2} \cdot z + c |
7,391 | 1 - q = -q + 1 |
17,286 | \tan(z) = \tan(z + π) |
15,248 | {{n \choose 2} \choose 2} = {n \choose 4}\cdot 3 + 3{n \choose 3} |
-29,331 | -2\cdot i + 9 = -i\cdot 2 + 1 + 8 |
23,805 | 1 + 3 + \dotsm + 2*m + (-1) = m*\frac{1}{2}*(2*m + \left(-1\right) + 1) = m^2 |
-24,755 | \left(2^{1/2} - 6^{1/2}\right)/4 = \cos(7\pi/12) |
15,634 | 359 = 3\cdot 5! + (-1) |
12,578 | z + z^2 + z^3 + \cdots + z^{n + (-1)} + z^n = \frac{z^{n + 1} - z}{(-1) + z} |
1,817 | \frac{1}{81}*16 = \frac{1}{3^4}*2^4 |
-16,559 | 12^{1/2}\times 8 = 8\times (4\times 3)^{1/2} |
19,370 | (e^{i \cdot y})^{-1} = e^{-y \cdot i} |
-3,325 | (3(-1) + 1 + 4) \sqrt{7} = \sqrt{7}*2 |
3,492 | x^2*y*z * z + x^5 = (x*y*z - y * y^2)*(y^2 + x*z) + x^5 + y^5 |
32,430 | 1 - \cos(z + y) = 2\cdot \sin^2(\left(z + y\right)/2) \leq 2\cdot (z^2 + y^2)/4 |
-2,914 | \sqrt{3} - \sqrt{48} + \sqrt{75} = \sqrt{3} - \sqrt{16 \times 3} + \sqrt{25 \times 3} |
55,135 | 89 - 61 = 28 |
-174 | \frac{1}{5! \cdot (9 + 5 \cdot \left(-1\right))!} \cdot 9! = \binom{9}{5} |
29,930 | x \cdot x + x + 1 = (x - x_1)\cdot (x - x_2) = x^2 - (x_1 + x_2)\cdot x + x_1\cdot x_2 |
-18,924 | 7/12 = G_r/(36\cdot \pi)\cdot 36\cdot \pi = G_r |
28,362 | x \cdot \left(b + a\right) = x \cdot b + a \cdot x |
-23,475 | 5/14 = \frac{5}{2} \cdot \frac17 |
20,508 | 503\times 497 = \left(500 + 3\right)\times \left(500 + 3\times (-1)\right) = 500^2 - 3^2 = 250000 + 9\times (-1) = 249991 |
33,533 | \cos{2 \cdot z} = \cos^2{z} - \sin^2{z} = 2 \cdot \cos^2{z} + (-1) = 1 - 2 \cdot \sin^2{z} |
11,791 | \cos{z} = \cos(\pi*2 - z) |
19,477 | (-w + k) \cdot (-w + k) = (w - k)^2 |
-210 | \dfrac{1}{(8 + 5 \cdot \left(-1\right))!} \cdot 8! = 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 |
22,295 | \{\} = ( x_1 + (-1), z') \Rightarrow [x_1,z'] = \{\} |
-9,517 | 18 = 2\times 9 |
44,540 | \pi = \frac{\pi}{2} + \pi/2 |
-15,944 | -\frac{32}{10} = 7*\frac{4}{10} - 6/10*10 |
-639 | \left(e^{7*\pi*i/6}\right)^5 = e^{\frac{7*\pi*i}{6}*1*5} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.