id
int64
-30,985
55.9k
text
stringlengths
5
437k
18,877
(1324 \cdot E)^2 = 1324 \cdot 1324 \cdot E = 12 \cdot 34 \cdot E = E
11,817
n^2 + n = n\cdot \left(1 + n\right)
-21,616
0 = \sin{\pi*2}
1,926
n + 1 \geq n + 1 rightarrow 1 + n = 1 + n
13,324
188\cdot \left(-1\right) + 16 + 112\cdot (-1) + 420 + 136\cdot (-1) = 0
-4,455
\frac{-x \cdot 5 + 8}{4 + x \cdot x - 5 \cdot x} = -\frac{4}{4 \cdot (-1) + x} - \frac{1}{x + \left(-1\right)}
179
100/200 = \frac12
15,458
c^Z W z = (c^Z W z)^Z = z^Z W c
10,837
1/(2*100) + \frac{1}{2*200} = \tfrac{3}{400}
24,645
\frac{1}{x}*x^{1/2} = \frac{1}{x^{1/2}*x^{1/2}}*x^{1/2} = \frac{1}{x^{1/2}}
9,079
5l + 6 = 5(l + 13 (-1)) + 71
-17,131
-6 = -6 \cdot (-2 \cdot m) - -12 = 12 \cdot m + 12 = 12 \cdot m + 12
18,959
\cos^2{\theta} - \sin^2{\theta} = 2\cdot \cos^2{\theta} + (-1) = 1 - 2\cdot \sin^2{\theta}
3,291
\left(\frac{2 z x}{x^2 + z^2} = -1 \implies 0 = \left(z + x\right)^2\right) \implies -z = x
3,643
(8 + y^2 + 1)^{-\frac12} = \left(y^2 + 9\right)^{-1/2}
9,545
1 = (y + (-1))^2 + \left(x + (-1)\right) * \left(x + (-1)\right) rightarrow 1 + (1 - \left(\left(-1\right) + x\right)^2)^{1 / 2} = y
36,755
-6/6.04 = \frac{1}{6.04 + 0 \times \left(-1\right)} \times \left(0 + 6 \times \left(-1\right)\right)
20,963
(y^2 - y + 6\cdot (-1))\cdot (y + 4) = 24\cdot \left(-1\right) + y^3 + 3\cdot y^2 - 10\cdot y
19,484
-\cos(p) = \sin\left(p - \pi/2\right)
17,159
60/100*n = n*3/5
-18,963
1/2 = \dfrac{1}{36 \pi} E_s*36 \pi = E_s
37,552
J_2 x_2 = J_2 x_2
3,286
\frac{1}{a}\cdot 1/b/c = \frac{1}{a\cdot c\cdot b}
13,005
\dfrac{r}{h - 2 \cdot R - r} = \frac{R}{h - R} \Rightarrow h = \frac{R \cdot R \cdot 2}{R - r}
13,207
\frac{\pi}{4} + 2*\pi*0 = \pi/4
-19,311
9/2 \cdot \frac79 = \frac{9}{9 \cdot \dfrac17} \cdot \frac{1}{2}
23,978
\left(-1\right) + y_4 = y_4
-19,677
9 \cdot 8/(9) = \tfrac{72}{9}
34,275
y^4 + 16*\left(-1\right) = (y^2 + 4*(-1))*\left(y * y + 4\right) = (y + 2*(-1))*(y + 2)*(y - 2*i)*\left(y + 2*i\right)
32,192
\operatorname{atan}(\sqrt{3}) \cdot 3 = \pi
-7,567
\frac{1}{34} \cdot (-6 + 24 \cdot i + 10 \cdot i + 40) = \left(34 + 34 \cdot i\right)/34 = 1 + i
32,413
\dfrac{1}{2}*(\sqrt{5} + 1) = 1/2 + \sqrt{5}/2
26,599
\cos^2{\theta} = (1 + \cos{2*\theta})/2
7,379
n + k - 2 \times k = -k + n
28,137
k_x*k_i = k_x*k_i
14,713
-\sin\left(40*\left(-1\right) + 90\right)*3^{1 / 2}/\sin(50) = -3^{\tfrac{1}{2}}
22,424
\frac{5}{3} = \frac{1}{\frac{10}{2} + 1} \cdot 10
25,217
\sigma\times x = \sigma\times x
20,197
\cos(2*\pi/3) = -1/2
22,802
\sqrt{8 \cdot 8 + 4^2 + (-8)^2} = 12
8,436
A\cdot H = H \cdot H\cdot H = H^3 = H\cdot H^2 = H\cdot A
-26,633
36 - B \cdot B = -B^2 + 6^2
19,752
\sin{3\cdot \theta} = 3\cdot \sin{\theta} - 4\cdot \sin^3{\theta}
20,309
|X\cdot g| = |-g\cdot X|
30,442
\frac{\partial}{\partial x} u^n = \frac{\partial}{\partial u} u^n \cdot \frac{\mathrm{d}u}{\mathrm{d}x}
26,328
x + q ± m = x + q ± m = x ± m + q
10,129
r\cdot X = r\cdot Y = n \Rightarrow X\cdot Y\cdot r = n
18,240
-1 = (-1)^{2 \cdot 3/2} = \left((-1)^2\right)^{3/2} = 1^{\frac{3}{2}} = 1^{1/2}
26,566
194689796301 = 21589*(3*7*11*13) * (3*7*11*13)
6,924
t_i*l_i = l_i*t_i
8,327
\left(e = e^{4 - 4\times B}\Longrightarrow 1 = 4 - B\times 4\right)\Longrightarrow \frac{1}{4}\times 3 = B
1,747
n^2 + 2 \cdot n + 3 \cdot (-1) = (3 + n) \cdot (n + (-1))
20,635
(k + x)*(i + \zeta) = \zeta*x + i*k + x*i + \zeta*k
-28,795
\dfrac{2\cdot \pi}{\tfrac{1}{3}\cdot 2\cdot \pi} = 3
12,466
\frac{z_m}{1 + z_m} = -\frac{1}{1 + z_m} + 1
12,638
\frac{\partial}{\partial x} (x\cdot \beta) = x\cdot \frac{d\beta}{dx} + \beta\cdot \frac{dx}{dx}
-4,730
\frac{1}{y + 2} - \tfrac{1}{y + \left(-1\right)}\cdot 5 = \frac{1}{2\cdot (-1) + y^2 + y}\cdot \left(11\cdot \left(-1\right) - 4\cdot y\right)
22,488
|\overline{e_j}| = |e_j|
-27,499
3 \cdot 5 \cdot n \cdot n \cdot n \cdot 2 = n^3 \cdot 30
45,997
(e^{i\pi})^2 = e^{2\pi i} = 1
4,874
2^{\frac{1}{3} \cdot (n + 1)} = 2^{1/3} \cdot 2^{\frac{n}{3}} > n \cdot 2^{\frac{1}{3}}
-15,945
-6\cdot 3/10 + 7/10\cdot 5 = \frac{17}{10}
16,966
-h^2 + a^2 = (-h + a) \cdot (a + h)
-2,248
\dfrac{3}{10} = \tfrac{1}{10}\cdot 4 - 10^{-1}
-6,894
6*4*8 = 192
26,097
2l + 1 = (l + 1)^2 - l \cdot l
7,298
df = 1 rightarrow fd = 1
-6,252
\dfrac{4}{z^2 - 3\cdot z + 18\cdot (-1)} = \frac{4}{(z + 3)\cdot (z + 6\cdot \left(-1\right))}
38,375
det\left(A\right) = 0 \Rightarrow A
-21,004
\frac{1}{10}\cdot 3\cdot \frac{9\cdot k}{9\cdot k} = 27\cdot k/(k\cdot 90)
-19,700
\dfrac{56}{9}\cdot 1 = 56/9
-15,960
5/10\cdot 6 - 10\cdot \frac{1}{10}\cdot 5 = -\frac{20}{10}
-1,365
\frac{24}{56} = \frac{3}{56 \cdot 1/8} \cdot 1 = 3/7
11,591
a + e + a\cdot e = (-1) + (e + 1)\cdot (a + 1)
-597
e^{7*i*\pi*3/2} = (e^{3*\pi*i/2})^7
-18,368
\dfrac{r \cdot r - r}{r^2 - 10 \cdot r + 9} = \frac{r}{(r + (-1)) \cdot (9 \cdot (-1) + r)} \cdot (\left(-1\right) + r)
-12,051
11/30 = \frac{1}{6 \cdot π} \cdot s \cdot 6 \cdot π = s
-19,463
\tfrac{\dfrac{1}{4} \cdot 3}{\frac19 \cdot 5} = 3/4 \cdot 9/5
3,664
\dfrac{1}{((-1) + y)*(3 + y)}*4 = \dfrac{1}{y + (-1)} - \frac{1}{3 + y}
-7,646
\frac{1}{-5 - 2 \cdot i} \cdot (4 + 19 \cdot i) \cdot \frac{-5 + i \cdot 2}{2 \cdot i - 5} = \frac{i \cdot 19 + 4}{-5 - i \cdot 2}
24,497
\dfrac{1}{\sqrt{1 + z \cdot z}} = \cos(\tan^{-1}(z))
32,150
(2 + 3 + 1)\cdot 3 = 18
4,958
(2 - \sqrt{3})/3 = (-4\sqrt{3} + 8)/12
-10,747
-\frac{30}{x\cdot 9 + 15\cdot \left(-1\right)} = -\frac{1}{5\cdot (-1) + 3\cdot x}\cdot 10\cdot 3/3
7,266
y \cdot \left(y^2 + 2 \cdot y + 1\right) = y^3 + 2 \cdot y^2 + y = 2 \cdot y^2 + y + 5 \cdot (-1)
28,292
(a + b)^2 = 100 = a^2 + 2 \cdot a \cdot b + b^2 \Rightarrow -\dfrac{1}{2} \cdot (a^2 + b^2) = a \cdot b
-10,431
\frac{4}{2*\left(-1\right) + x*2} = \frac22*\frac{2}{\left(-1\right) + x}
-4,323
\frac{1}{y^2 \cdot 5}6 = \frac{1}{y^2}6 / 5
41,377
2468/990 = \frac{1234}{495}
26,149
{31 \choose 2} = {29 + 3 + (-1) \choose (-1) + 3}
-1,596
-2*\pi + \pi*3 = \pi
30,231
15238195.2 = (484269.6 + 45340.8 + 184680)\times \tfrac{128}{6}
-12,359
45 = 3 * 3*5
-22,311
90 + y^2 - y*19 = (9*(-1) + y)*(10*(-1) + y)
24,416
\pi = 3.14159265358\cdot \cdots = 3 + 1/10 + \tfrac{1}{100}\cdot 4 + \frac{1}{1000} + \frac{5}{10000} + \cdots
29,282
z^{l + (-1)} \cdot z = z^l
8,628
286 = 78*(13 + 1 + 3*\left(-1\right))/3
-3,360
-\sqrt{12} + \sqrt{48} = \sqrt{16*3} - \sqrt{4*3}
-27,414
368 + 10\cdot (-1) = 358
16,739
F \cdot F \cdot D = -F \cdot D \cdot F = D \cdot F \cdot F