id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
18,877 | (1324 \cdot E)^2 = 1324 \cdot 1324 \cdot E = 12 \cdot 34 \cdot E = E |
11,817 | n^2 + n = n\cdot \left(1 + n\right) |
-21,616 | 0 = \sin{\pi*2} |
1,926 | n + 1 \geq n + 1 rightarrow 1 + n = 1 + n |
13,324 | 188\cdot \left(-1\right) + 16 + 112\cdot (-1) + 420 + 136\cdot (-1) = 0 |
-4,455 | \frac{-x \cdot 5 + 8}{4 + x \cdot x - 5 \cdot x} = -\frac{4}{4 \cdot (-1) + x} - \frac{1}{x + \left(-1\right)} |
179 | 100/200 = \frac12 |
15,458 | c^Z W z = (c^Z W z)^Z = z^Z W c |
10,837 | 1/(2*100) + \frac{1}{2*200} = \tfrac{3}{400} |
24,645 | \frac{1}{x}*x^{1/2} = \frac{1}{x^{1/2}*x^{1/2}}*x^{1/2} = \frac{1}{x^{1/2}} |
9,079 | 5l + 6 = 5(l + 13 (-1)) + 71 |
-17,131 | -6 = -6 \cdot (-2 \cdot m) - -12 = 12 \cdot m + 12 = 12 \cdot m + 12 |
18,959 | \cos^2{\theta} - \sin^2{\theta} = 2\cdot \cos^2{\theta} + (-1) = 1 - 2\cdot \sin^2{\theta} |
3,291 | \left(\frac{2 z x}{x^2 + z^2} = -1 \implies 0 = \left(z + x\right)^2\right) \implies -z = x |
3,643 | (8 + y^2 + 1)^{-\frac12} = \left(y^2 + 9\right)^{-1/2} |
9,545 | 1 = (y + (-1))^2 + \left(x + (-1)\right) * \left(x + (-1)\right) rightarrow 1 + (1 - \left(\left(-1\right) + x\right)^2)^{1 / 2} = y |
36,755 | -6/6.04 = \frac{1}{6.04 + 0 \times \left(-1\right)} \times \left(0 + 6 \times \left(-1\right)\right) |
20,963 | (y^2 - y + 6\cdot (-1))\cdot (y + 4) = 24\cdot \left(-1\right) + y^3 + 3\cdot y^2 - 10\cdot y |
19,484 | -\cos(p) = \sin\left(p - \pi/2\right) |
17,159 | 60/100*n = n*3/5 |
-18,963 | 1/2 = \dfrac{1}{36 \pi} E_s*36 \pi = E_s |
37,552 | J_2 x_2 = J_2 x_2 |
3,286 | \frac{1}{a}\cdot 1/b/c = \frac{1}{a\cdot c\cdot b} |
13,005 | \dfrac{r}{h - 2 \cdot R - r} = \frac{R}{h - R} \Rightarrow h = \frac{R \cdot R \cdot 2}{R - r} |
13,207 | \frac{\pi}{4} + 2*\pi*0 = \pi/4 |
-19,311 | 9/2 \cdot \frac79 = \frac{9}{9 \cdot \dfrac17} \cdot \frac{1}{2} |
23,978 | \left(-1\right) + y_4 = y_4 |
-19,677 | 9 \cdot 8/(9) = \tfrac{72}{9} |
34,275 | y^4 + 16*\left(-1\right) = (y^2 + 4*(-1))*\left(y * y + 4\right) = (y + 2*(-1))*(y + 2)*(y - 2*i)*\left(y + 2*i\right) |
32,192 | \operatorname{atan}(\sqrt{3}) \cdot 3 = \pi |
-7,567 | \frac{1}{34} \cdot (-6 + 24 \cdot i + 10 \cdot i + 40) = \left(34 + 34 \cdot i\right)/34 = 1 + i |
32,413 | \dfrac{1}{2}*(\sqrt{5} + 1) = 1/2 + \sqrt{5}/2 |
26,599 | \cos^2{\theta} = (1 + \cos{2*\theta})/2 |
7,379 | n + k - 2 \times k = -k + n |
28,137 | k_x*k_i = k_x*k_i |
14,713 | -\sin\left(40*\left(-1\right) + 90\right)*3^{1 / 2}/\sin(50) = -3^{\tfrac{1}{2}} |
22,424 | \frac{5}{3} = \frac{1}{\frac{10}{2} + 1} \cdot 10 |
25,217 | \sigma\times x = \sigma\times x |
20,197 | \cos(2*\pi/3) = -1/2 |
22,802 | \sqrt{8 \cdot 8 + 4^2 + (-8)^2} = 12 |
8,436 | A\cdot H = H \cdot H\cdot H = H^3 = H\cdot H^2 = H\cdot A |
-26,633 | 36 - B \cdot B = -B^2 + 6^2 |
19,752 | \sin{3\cdot \theta} = 3\cdot \sin{\theta} - 4\cdot \sin^3{\theta} |
20,309 | |X\cdot g| = |-g\cdot X| |
30,442 | \frac{\partial}{\partial x} u^n = \frac{\partial}{\partial u} u^n \cdot \frac{\mathrm{d}u}{\mathrm{d}x} |
26,328 | x + q ± m = x + q ± m = x ± m + q |
10,129 | r\cdot X = r\cdot Y = n \Rightarrow X\cdot Y\cdot r = n |
18,240 | -1 = (-1)^{2 \cdot 3/2} = \left((-1)^2\right)^{3/2} = 1^{\frac{3}{2}} = 1^{1/2} |
26,566 | 194689796301 = 21589*(3*7*11*13) * (3*7*11*13) |
6,924 | t_i*l_i = l_i*t_i |
8,327 | \left(e = e^{4 - 4\times B}\Longrightarrow 1 = 4 - B\times 4\right)\Longrightarrow \frac{1}{4}\times 3 = B |
1,747 | n^2 + 2 \cdot n + 3 \cdot (-1) = (3 + n) \cdot (n + (-1)) |
20,635 | (k + x)*(i + \zeta) = \zeta*x + i*k + x*i + \zeta*k |
-28,795 | \dfrac{2\cdot \pi}{\tfrac{1}{3}\cdot 2\cdot \pi} = 3 |
12,466 | \frac{z_m}{1 + z_m} = -\frac{1}{1 + z_m} + 1 |
12,638 | \frac{\partial}{\partial x} (x\cdot \beta) = x\cdot \frac{d\beta}{dx} + \beta\cdot \frac{dx}{dx} |
-4,730 | \frac{1}{y + 2} - \tfrac{1}{y + \left(-1\right)}\cdot 5 = \frac{1}{2\cdot (-1) + y^2 + y}\cdot \left(11\cdot \left(-1\right) - 4\cdot y\right) |
22,488 | |\overline{e_j}| = |e_j| |
-27,499 | 3 \cdot 5 \cdot n \cdot n \cdot n \cdot 2 = n^3 \cdot 30 |
45,997 | (e^{i\pi})^2 = e^{2\pi i} = 1 |
4,874 | 2^{\frac{1}{3} \cdot (n + 1)} = 2^{1/3} \cdot 2^{\frac{n}{3}} > n \cdot 2^{\frac{1}{3}} |
-15,945 | -6\cdot 3/10 + 7/10\cdot 5 = \frac{17}{10} |
16,966 | -h^2 + a^2 = (-h + a) \cdot (a + h) |
-2,248 | \dfrac{3}{10} = \tfrac{1}{10}\cdot 4 - 10^{-1} |
-6,894 | 6*4*8 = 192 |
26,097 | 2l + 1 = (l + 1)^2 - l \cdot l |
7,298 | df = 1 rightarrow fd = 1 |
-6,252 | \dfrac{4}{z^2 - 3\cdot z + 18\cdot (-1)} = \frac{4}{(z + 3)\cdot (z + 6\cdot \left(-1\right))} |
38,375 | det\left(A\right) = 0 \Rightarrow A |
-21,004 | \frac{1}{10}\cdot 3\cdot \frac{9\cdot k}{9\cdot k} = 27\cdot k/(k\cdot 90) |
-19,700 | \dfrac{56}{9}\cdot 1 = 56/9 |
-15,960 | 5/10\cdot 6 - 10\cdot \frac{1}{10}\cdot 5 = -\frac{20}{10} |
-1,365 | \frac{24}{56} = \frac{3}{56 \cdot 1/8} \cdot 1 = 3/7 |
11,591 | a + e + a\cdot e = (-1) + (e + 1)\cdot (a + 1) |
-597 | e^{7*i*\pi*3/2} = (e^{3*\pi*i/2})^7 |
-18,368 | \dfrac{r \cdot r - r}{r^2 - 10 \cdot r + 9} = \frac{r}{(r + (-1)) \cdot (9 \cdot (-1) + r)} \cdot (\left(-1\right) + r) |
-12,051 | 11/30 = \frac{1}{6 \cdot π} \cdot s \cdot 6 \cdot π = s |
-19,463 | \tfrac{\dfrac{1}{4} \cdot 3}{\frac19 \cdot 5} = 3/4 \cdot 9/5 |
3,664 | \dfrac{1}{((-1) + y)*(3 + y)}*4 = \dfrac{1}{y + (-1)} - \frac{1}{3 + y} |
-7,646 | \frac{1}{-5 - 2 \cdot i} \cdot (4 + 19 \cdot i) \cdot \frac{-5 + i \cdot 2}{2 \cdot i - 5} = \frac{i \cdot 19 + 4}{-5 - i \cdot 2} |
24,497 | \dfrac{1}{\sqrt{1 + z \cdot z}} = \cos(\tan^{-1}(z)) |
32,150 | (2 + 3 + 1)\cdot 3 = 18 |
4,958 | (2 - \sqrt{3})/3 = (-4\sqrt{3} + 8)/12 |
-10,747 | -\frac{30}{x\cdot 9 + 15\cdot \left(-1\right)} = -\frac{1}{5\cdot (-1) + 3\cdot x}\cdot 10\cdot 3/3 |
7,266 | y \cdot \left(y^2 + 2 \cdot y + 1\right) = y^3 + 2 \cdot y^2 + y = 2 \cdot y^2 + y + 5 \cdot (-1) |
28,292 | (a + b)^2 = 100 = a^2 + 2 \cdot a \cdot b + b^2 \Rightarrow -\dfrac{1}{2} \cdot (a^2 + b^2) = a \cdot b |
-10,431 | \frac{4}{2*\left(-1\right) + x*2} = \frac22*\frac{2}{\left(-1\right) + x} |
-4,323 | \frac{1}{y^2 \cdot 5}6 = \frac{1}{y^2}6 / 5 |
41,377 | 2468/990 = \frac{1234}{495} |
26,149 | {31 \choose 2} = {29 + 3 + (-1) \choose (-1) + 3} |
-1,596 | -2*\pi + \pi*3 = \pi |
30,231 | 15238195.2 = (484269.6 + 45340.8 + 184680)\times \tfrac{128}{6} |
-12,359 | 45 = 3 * 3*5 |
-22,311 | 90 + y^2 - y*19 = (9*(-1) + y)*(10*(-1) + y) |
24,416 | \pi = 3.14159265358\cdot \cdots = 3 + 1/10 + \tfrac{1}{100}\cdot 4 + \frac{1}{1000} + \frac{5}{10000} + \cdots |
29,282 | z^{l + (-1)} \cdot z = z^l |
8,628 | 286 = 78*(13 + 1 + 3*\left(-1\right))/3 |
-3,360 | -\sqrt{12} + \sqrt{48} = \sqrt{16*3} - \sqrt{4*3} |
-27,414 | 368 + 10\cdot (-1) = 358 |
16,739 | F \cdot F \cdot D = -F \cdot D \cdot F = D \cdot F \cdot F |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.