id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
38,355 | 5 \cdot 7^2 \cdot 17 = 4165 |
38,390 | e^0 = \left(e^0\right)^{1 / 2} |
1,682 | \frac{1}{1 - x + 2 + 2\cdot (-1)}\cdot (x + 2\cdot (-1)) = \dfrac{x + 2\cdot (-1)}{-1 - x + 2\cdot (-1)} = -\frac{1}{1 + x + 2\cdot (-1)}\cdot (x + 2\cdot (-1)) |
7,739 | 5 = z\cdot 6 + \nu \Rightarrow \nu = 5 - 6\cdot z |
-9,461 | -x*35 + 20 (-1) = -2*2*5 - x*5*7 |
27,068 | (-1) + A^{12} = ((-1) + A^6) \cdot (A^6 + 1) |
4,165 | \left(1 + 2\right)^\varphi = 3^\varphi |
-20,705 | \frac{1}{x\cdot 2 + 6\cdot (-1)}\cdot ((-1)\cdot 4\cdot x) = \frac{1}{3\cdot (-1) + x}\cdot ((-2)\cdot x)\cdot 2/2 |
35,241 | \overline{w \times x} = \overline{w} \times \overline{x} |
-4,367 | \frac{q^3 \cdot 56}{q^2 \cdot 42} = \frac{1}{42}56 \dfrac{1}{q^2}q \cdot q \cdot q |
3,632 | m + \left(-1\right) = \frac{1}{m} \cdot (m + (-1)) \cdot m |
23,650 | 48/52 \cdot 4/51 = \dfrac{192}{2652} = \dfrac{16}{221} |
19,566 | -3\cdot x\cdot d\cdot (-2/3) = 2\cdot d\cdot x |
35,189 | 1/(ab) = 1/\left(ab\right) |
4,467 | \frac{z}{n} = w\Longrightarrow n\cdot w = z |
10,311 | |\left(-1\right) \cdot \left(-1\right) + x| = |1 + x| |
14,834 | {n \choose k} = \frac{1}{\left(n - k\right)! \cdot k!} \cdot n! |
-30,430 | 0 = p^2 * p + p = (p^2 + 1) p |
9,063 | 9 = 3^{1 / 2} \times 3 \times 3^{1 / 2} |
-10,446 | 10 = -32 - 80r + 20 = -80r - 12 |
31,806 | (\varphi + 1)! = \varphi! \cdot \left(1 + \varphi\right) |
-205 | \binom{7}{4} = \dfrac{7!}{4! (7 + 4\left(-1\right))!} |
31,168 | \sin{π\cdot \frac32} = -1 |
21,418 | \dfrac 1{\frac 1{3^4}}=1/(1/3^4)=1/3^{-4}=3^4 |
27,144 | \frac{1}{4^2} (2^2 - 1^2) = 3/16 |
11,771 | \tan{\dfrac{\pi\times 5}{6}} = -1/(\sqrt{3}) |
18,675 | -f^2 + c^2 = \left(c - f\right)*(c + f) |
-10,948 | 85 \div 5 = 17 |
1,150 | \frac{1}{6 + \sqrt{34}} \cdot (6 - \sqrt{34}) = 35 - \sqrt{34} \cdot 6 |
-20,203 | \frac{1}{60\cdot \left(-1\right) + p\cdot 40}\cdot (-36\cdot p + 54) = -\frac{1}{10}\cdot 9\cdot \frac{1}{4\cdot p + 6\cdot (-1)}\cdot (p\cdot 4 + 6\cdot (-1)) |
-23,000 | 26/39 = \frac{13\cdot 2}{3\cdot 13} |
-10,527 | -\dfrac{16}{4z + 20} = -\frac{1}{10 + z*2}8*\frac{1}{2}2 |
40,056 | (1 - 0.6)^3 = 0.4 * 0.4^2 = 0.064 |
-4,157 | \frac{1}{35} 63 \frac{1}{y^5} y^2 y = \frac{y^3}{35 y^5} 63 |
11,628 | \frac12\cdot (-\cos(2\cdot x) + 1) = \sin^2(x) |
19,711 | \sin^2{x} - 4 \cdot \cos^2{x} = \left(\sin{x} + \cos{x} \cdot 2\right) \cdot \left(\sin{x} - 2 \cdot \cos{x}\right) |
11,147 | 1 + x * x + x = \frac{1}{4}((x*2 + 1)^2 + 3) |
15,160 | 19/50 = \frac{1}{50}\cdot 3 + \frac{4}{50} + \frac{4}{50} + \frac{4}{50} + \tfrac{1}{50}\cdot 4 |
13,190 | B \cdot C^2 = 16 + 9 + 6 \cdot (-1) = 19 \Rightarrow B \cdot C = \sqrt{19} |
-5,779 | \frac{l \cdot 3}{(l + 6) \cdot (l + 5)} \cdot 1 = \frac{3 \cdot l}{l^2 + 11 \cdot l + 30} |
37,505 | 2 = 7 + 5\times (-1) |
34,302 | 17/\left(\sqrt{17}\right) = \sqrt{17} |
-22,243 | q^2 + 10q + 21 = (q + 7)(q + 3) |
33,579 | 3^x + 3^{x + 2} = 3^x + 3^x\cdot 3^2 = 3^x + 9\cdot 3^x = 10\cdot 3^x |
-19,112 | \dfrac{3}{4} = A_s/\left(64\cdot \pi\right)\cdot 64\cdot \pi = A_s |
39,471 | z^3 + (-4 + i) z^2 + (-i*5 + 1) z + 6*(1 + i) = (z * z - z*5 + 6) (1 + z + i) |
7,767 | \sin\left(\pi/2\cdot 2\right) = 0 |
33,125 | (2 + i)*(2 - i) = 2^2 - i * i = 4 - -1 = 5 |
15,333 | z \cdot q \cdot k = k \cdot z \cdot q |
20,964 | 16 = -3 \cdot 2^{1 + z} + 2^{z \cdot 2} \implies 2^z = -2 |
-1,588 | 7/4 \pi + \pi\cdot 5/4 = 3\pi |
5,627 | -60^2 + 65 * 65 = 25^2 |
-4,808 | 63.0 \cdot 10 \cdot 10^2 = 63 \cdot 10^{5 - 2} |
432 | \dfrac{4}{3^5} = \dfrac{1}{3^5}*(3 + 1) |
1,004 | \frac{1}{1 - x \cdot x} = \dfrac{1}{2 \cdot (-x + 1)} + \dfrac{1}{(1 + x) \cdot 2} |
37,643 | (2^{290})^{14}\cdot 2^{182} = 2^{4242} |
15,890 | (x\cdot z\cdot \frac{1}{x\cdot z})^2\cdot x\cdot z\cdot 1/(x\cdot z)\cdot x\cdot 1/(x\cdot z)\cdot z = (x\cdot z\cdot 1/(x\cdot z))^4 |
7,085 | \left(z + x + y\right) (-zx + x^2 + y^2 + z * z - yx - yz) = x^3 + y * y * y + z^3 - 3yz x |
29,120 | 4/81 = \frac{16}{4}\times 1/81 |
23,913 | \left(L - J = M - x \Rightarrow -x + J = -M + L\right) \Rightarrow -J + x = M - L |
-15,884 | 5/10 \cdot 10 - 8 \cdot \frac{1}{10} \cdot 5 = \dfrac{10}{10} |
22,545 | 3 \cdot 8/9 \cdot \frac{1}{9} \cdot 8/9 = \dfrac{64}{243} = 0.2634 |
2,348 | (\dfrac{1}{X} + X)^2 + 2*(-1) = \dfrac{1}{X^2} + X^2 |
20,308 | 1/3 = 5/(5*3) |
-27,710 | \frac{\mathrm{d}}{\mathrm{d}z} (-12\times \cos(z)) = 12\times \sin(z) |
-5,501 | \dfrac{2}{(q + 7)\cdot 2} = \dfrac{1}{2\cdot q + 14}\cdot 2 |
32,658 | 3\cdot 2 = 3\cdot 4 = 0 |
24,655 | 8 + x = 7 + 4 \Rightarrow 3 = x |
13,093 | d/dy (\frac{3}{y}) = 3 \cdot (-\dfrac{1}{y^2}) = -\frac{3}{y^2} = -\frac{3}{y \cdot y} |
37,476 | \lim_{n\to\infty}\frac{n}{n+1} = \lim_{n\to\infty}\frac{1}{\quad\frac{n+1}{n}\quad} = \lim_{n\to\infty}\frac{1}{\frac{n}{n}+\frac{1}{n}} = \lim_{n\to\infty}\frac{1}{1+\frac{1}{n}} |
6,176 | \cosh(\overline{z}) = \overline{\cosh\left(z\right)} |
-22,769 | \frac{10}{10 \cdot 3} \cdot 7 = \frac{70}{30} |
5,486 | \cos(x) = \sin(\dfrac{1}{2}\cdot \pi - x) |
28,041 | \operatorname{atan}(-1/\left(\sqrt{3}\right)) = -\frac16 \cdot \pi |
30,368 | -1 = (q + (-1))\cdot (1 + q + q^2 + \ldots) = q + (-1) + (q + (-1))\cdot q + (q + (-1))\cdot q^2 + \ldots |
12,734 | \left(-1\right) + y \cdot y = \left(1 + y\right) \cdot (y + (-1)) |
8,908 | 1/(1/a) = \dfrac{1}{\frac{1}{a}} = \frac1a \cdot a/(1/a) |
-18,406 | \dfrac{z}{(z + 8*\left(-1\right))*\left(8*(-1) + z\right)}*\left(z + 8*(-1)\right) = \tfrac{-z*8 + z^2}{64 + z^2 - z*16} |
3,278 | 1/2 \cdot \frac18/2 = 1/32 |
23,203 | E[C^2 - 2CE[C] + E[C]^2] = E[C^2] - 2E[C]^2 + E[C] \cdot E[C] = E[C \cdot C] - E[C] \cdot E[C] |
10,253 | \dfrac{p_M - \frac{1}{p_M}}{p_M + (-1)} = 1 + \frac{1 - 1/(p_M)}{p_M + (-1)} \geq 1 + \frac{1}{2\cdot (p_M + (-1))} |
2,708 | 1 + 2 + 2^2 + ... + 2^{j + (-1)} = \frac{1 - 2^j}{1 + 2\cdot (-1)} = 2^j + (-1) |
16,243 | z \cdot \frac{-z^k + 1}{-z + 1} = z + z^2 + ... \cdot z^k |
-12,112 | \frac{14}{45} = s/(12 \pi)*12 \pi = s |
316 | 0 = s \cdot s\cdot a\cdot 2 - 3\cdot s\cdot a^2 \Rightarrow a = \tfrac{s}{3}\cdot 2 |
28,373 | 158 = 4^0*2 + 4^3*2 + 4^2 + 3*4^1 |
4,621 | (2 + \sqrt{4})\cdot (2 - \sqrt{4}) = 0 |
-1,064 | 8/1 \cdot 3/4 = 1/4 \cdot 3/(1/8) |
-10,536 | -\dfrac{1}{r*16}*14 = -7/(8*r)*\frac{2}{2} |
12,881 | \sin(π\cdot k + W) = \sin\left(π\cdot k\right)\cdot \cos\left(W\right) + \cos(π\cdot k)\cdot \sin(W) = (-1)^k\cdot \sin(W) |
21,443 | m = \left\{m, \dots, 2, 1\right\} |
40,314 | -\dfrac{1}{7}10 = -10/7 |
-22,226 | d^2 - 4\cdot d + 3 = (d + (-1))\cdot (3\cdot (-1) + d) |
-20,745 | (5 - 10 m)/(-8) \cdot 9/9 = \frac{1}{-72}(45 - 90 m) |
7,206 | \sin\left(w + z\right) = \sin(z + w) |
-22,242 | (r + 9 \cdot \left(-1\right)) \cdot \left(r + 3\right) = r^2 - r \cdot 6 + 27 \cdot (-1) |
18,339 | \dfrac{1}{Jg} = \tfrac{1}{Jg} |
-30,245 | y^2 - y\cdot 2 + 1 = ((-1) + y) (y + (-1)) |
18,303 | 4! - 3! \cdot 5 + 5 \cdot 2! - 5 \cdot 1! + 1 + (-1) = -1 |
-23,248 | \frac{6}{25} = \frac{1}{5}2*\frac35 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.