id
int64
-30,985
55.9k
text
stringlengths
5
437k
11,621
0 = x^4 + 6*x^2 + 25 = (x * x + 5)^2 - 4*x * x = (x * x - 2*x + 5)*(x^2 + 2*x + 5)
29,115
0 = b\cdot y\cdot 3 + c \Rightarrow -\frac{c}{b\cdot 3} = y
1,059
\dfrac{1}{t} = \frac{1 - \frac{1}{t}}{(-1) + t}
-1,493
9/2*5/6 = 9*5/(2*6) = \frac{45}{12}
2,898
(e^x + 1)^{\frac{1}{x}} = (e^x)^{1/x} \cdot (1 + e^{-x})^{\frac{1}{x}} = e \cdot (1 + e^{-x})^{\frac1x}
12,869
\left(b b^2 = x^3 \Rightarrow b^9 = x^9\right) \Rightarrow b^2 = x^2
2,185
p + p*5 + 6*(-1) + 1 = p*6 + 5*(-1)
-10,662
-10/(x*12) = -\frac{5}{6*x}*2/2
23,709
2 \cdot \left(-2\right) - \left(-6\right) = 2
-1,607
7/12*\pi = \frac{31}{12}*\pi - \pi*2
31,646
a \cdot a \cdot a + b^3 + c^3 - 3\cdot a\cdot c\cdot b = \left(c + a + b\right)\cdot (-a\cdot c + a^2 + b^2 + c^2 - b\cdot a - c\cdot b)
5,841
135 = \frac{1}{14} \cdot 1890
-25,827
y \cdot 7 + 3y \cdot y = \frac{1}{y + 1}\left(3y^3 + y^2 \cdot 10 + y \cdot 7\right)
33,148
-(1 + e^{-2i}) = -e^{-2i} - 1
8,694
y^{2^{1 + i}} = (y^{2^i})^2
15,840
1/6/(1/4) = \frac23
1,150
35 - 6\sqrt{34} = \frac{-\sqrt{34} + 6}{6 + \sqrt{34}}
17,332
\left(z + x + y\right)^2 = 2(xz + xy + yz) + x^2 + y^2 + z * z \Rightarrow z^2 + x^2 + y^2 = 6
15,114
h_1 \cdot b_1 = h \cdot b \Rightarrow b/(b_1) = \frac{1}{h} \cdot h_1
2,633
0\cdot (y + 1) = 0\cdot y
-25,484
\frac{\text{d}}{\text{d}y} \sin(y) = \cos\left(y\right)
27,690
\cos{2 z} = \frac{-\tan^2{z} + 1}{1 + \tan^2{z}}
37,018
10 + 12\cdot 5 = 70
-11,717
(5/2)^2 = \dfrac{25}{4}
23,728
A^2 - E^2 = (-E + A) \cdot (E + A)
31,795
-4 * 4 * 4 - 4^2 - 10*(-4) + 8 = -32
24,662
\cos^2(x) - \sin^2\left(x\right) = \cos\left(x\cdot 2\right)
6,713
\left(y + z\right)^2 - (-y + z) \cdot (-y + z) = 4\cdot z\cdot y
29,155
6\pi = 3 \cdot 2\pi
26,625
\cos\left(x\right)*\sin(x) = \sin(x*2)/2
21,611
\cos\left(-x - \frac{\pi}{2}\right) = -\sin{x}
10,078
r \cdot r_1/r_2 = r/1 \cdot r_1/r_2 = \tfrac{r_1}{r_2} \cdot r
30,088
\cos(\arcsin(z)) = \sqrt{1 - \sin^2\left(\arcsin(z)\right)} = \sqrt{1 - z \cdot z}
-17,139
8 = 8*3k + 8\left(-4\right) = 24 k - 32 = 24 k + 32 \left(-1\right)
28,938
\infty + 0\times \left(-1\right) = \infty
13,882
\left(-2\right)^k = -2 \cdot (-2)^{k + (-1)}
22,087
-x + x + z + x + z - z = -z - x + x + x + z + z
6,730
a^{b_2 + b_1} = a^{b_2}\cdot a^{b_1}
337
\frac18(84 + 0 + 0 + 12 + 36 + 36 + 0 + 0) = 21
13,468
(3*a + 2007) * (3*a + 2007) = (3*(a + 669)) * (3*(a + 669)) = 9*(a + 669)^2
23,743
(1 - i) \cdot (1 - i) = 1^2 - 2\cdot i + i \cdot i = 1 - 2\cdot i + \left(-1\right) = -2\cdot i
-9,898
88\% = \frac{88}{100} = \frac{22}{25}
5,625
1 + z^4 = (z^2 - 2^{\frac{1}{2}} \cdot z + 1) \cdot (z \cdot z + 2^{\frac{1}{2}} \cdot z + 1)
42,431
9 - 2 + 7 = 0
-16,550
7\sqrt{99} = \sqrt{9 \cdot 11} \cdot 7
-1,178
45/72 = \frac{\frac{1}{9}}{72*1/9} 45 = \tfrac{5}{8}
4,729
\frac{1}{2}\cdot ((-1)\cdot \pi) + \pi\cdot 17 = \frac{33\cdot \pi}{2}
24,647
\dfrac{(\pi/2)^2}{2} = \dfrac{\pi^2}{8}
-10,569
3/(y\cdot 75) = \frac{1}{25\cdot y}\cdot 1
1,328
x*2x * x x^2*2 = x^{1 + 2 + 2}*2*2
-9,594
-50\% = -\dfrac{50}{100} = -0.5
20,843
38 + 5 \cdot \left(-1\right) = 33
13,308
\cos{2\cdot x} - \sin{x}\cdot 3 + (-1) = \cos{x\cdot 2}
28,270
1575 = \tfrac{10!}{4!^2 \cdot 4}
-4,352
\frac{44}{22} \cdot \frac{k^5}{k \cdot k} = \dfrac{k^5 \cdot 44}{22 \cdot k^2}
14,149
\cos\left(C\right) = \sin(\frac{\pi}{2} - C)
12,181
-\left((-1) + l\right)^2 + \left(1 + l + (-1)\right)^2 = 1 + 2\cdot \left((-1) + l\right)
28,226
x^8 + 4 = (x^4 + 2*x^2 + 2)*(x^4 - x^2*2 + 2)
1,890
\frac{1}{(\pi\cdot 4)^{\dfrac{1}{2}}} = 1/\left(2\cdot \sqrt{\pi}\right)
12,222
x + \left(-1\right) = p\Longrightarrow x = p + 1
22,805
5^{-\frac{1}{5}} = \frac{5^{\frac45}}{5}
2,629
(-1) + n + (-1) + (-1) = 3 \cdot \left(-1\right) + n
23,444
Z^x\cdot B\cdot Z = Z^x\cdot B\cdot B\cdot Z = Z^x\cdot B^x\cdot B\cdot Z = (B\cdot Z)^x\cdot B\cdot Z
19,967
(1 + u\cdot \left(-1 + a\right))/a = \frac1a\cdot (1 - u\cdot (1 - a))
-10,510
\tfrac{3}{4z + 4(-1)} \dfrac{1}{3}3 = \frac{9}{12 z + 12 (-1)}
3,478
(x + 2\cdot (-1))\cdot (x + 3) = 6\cdot (-1) + x^2 + x
27,310
(1 + i)! = i!*(i + 1)
39,876
\frac{1}{5} = \dfrac15
3,807
\cos(0) = \cos(\pi*2)\Longrightarrow 0 = \pi
9,647
\cos{\frac{105}{3}} = \cos{35}
11,470
\frac{1}{x\cdot 2}\cdot 2 + \frac{x}{2\cdot x} = \dfrac{x + 2}{2\cdot x}
-4,360
\frac{66}{48} \frac{1}{s^4}s = \dfrac{s*66}{48 s^4}1
6,251
\frac{1}{1!\times 1!\times 1!\times 4!\times 4!}\times 11!/2 = 34650
20,678
-2 = 2\cdot (-1) + 0 + 0\cdot (-1)
4,672
\frac{z^{1/2}}{z^3} = z^{-2.5}
12,039
E(ax) = ax
16,936
\left(b + h\right)\cdot (h - b) = h^2 - b^2
9,960
{n \choose 2} = \frac{1}{2\times (n + 2\times (-1))!}\times n!
6,562
x^3 - b^3 = (x - b)*(b^2 + x^2 + x*b)
2,661
-(180 - X - A) + 180 = X + A
-9,441
D\cdot 2\cdot 2\cdot 2\cdot 5 = 40\cdot D
-4,509
(5 + z) (1 + z) = z^2 + z \cdot 6 + 5
27,023
\cos{z}\cdot \frac{z}{\sin{z}} = \dfrac{z}{\tan{z}}
21,360
(z^2 + y \cdot y)^2 = (z^2 - y^2)^2 + \left(2\cdot z\cdot y\right)^2 = 5^2 + 12^2 = 13 \cdot 13\Longrightarrow y^2 + z^2 = 13
18,738
\operatorname{asin}(\frac{1}{2}2^{1 / 2}) = \frac{\pi}{4}
8,735
\left\{1, 10, \dotsm\right\} = 10
183
h_1 = \frac{y + h_2}{h_2 + z} \implies y + h_2 = h_1 \cdot (z + h_2) = h_1 \cdot z + h_1 \cdot h_2
-2,847
3^{\frac{1}{2}} \cdot 2 + 3^{1 / 2} = 4^{\frac{1}{2}} \cdot 3^{1 / 2} + 3^{\frac{1}{2}}
16,889
\frac{2r\pi}{4} = \frac{\pi}{2} r
20,325
\dfrac{1}{c}*a*\tfrac1d*b = a*b/(c*d)
17,673
a^{x + \varepsilon} = a^x*a^\varepsilon
47,625
\frac{6! \cdot \binom{3}{2} \cdot \binom{6}{3}}{\binom{11}{3} \cdot 6! \cdot \binom{8}{2}} = 1/77
-5,780
\frac{1}{5 \cdot (x + 3)} = \frac{1}{15 + 5 \cdot x}
-107
3 = 2 + 1
-10,623
\frac{12}{12}*\frac{10}{2 z + 3} = \dfrac{120}{36 + z*24}
12,903
g^{p + z} = g^p*g^z
-22,350
18 + z^2 - z \cdot 11 = (z + 9 \cdot (-1)) \cdot \left(z + 2 \cdot (-1)\right)
9,439
m + k + m + k = (k + m)\cdot 2
17,700
(x - g)^2 = (x - g)*(x - g)
23,477
\sin(x + h) = \cos\left(h\right) \sin(x) + \cos(x) \sin(h)