id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
11,621 | 0 = x^4 + 6*x^2 + 25 = (x * x + 5)^2 - 4*x * x = (x * x - 2*x + 5)*(x^2 + 2*x + 5) |
29,115 | 0 = b\cdot y\cdot 3 + c \Rightarrow -\frac{c}{b\cdot 3} = y |
1,059 | \dfrac{1}{t} = \frac{1 - \frac{1}{t}}{(-1) + t} |
-1,493 | 9/2*5/6 = 9*5/(2*6) = \frac{45}{12} |
2,898 | (e^x + 1)^{\frac{1}{x}} = (e^x)^{1/x} \cdot (1 + e^{-x})^{\frac{1}{x}} = e \cdot (1 + e^{-x})^{\frac1x} |
12,869 | \left(b b^2 = x^3 \Rightarrow b^9 = x^9\right) \Rightarrow b^2 = x^2 |
2,185 | p + p*5 + 6*(-1) + 1 = p*6 + 5*(-1) |
-10,662 | -10/(x*12) = -\frac{5}{6*x}*2/2 |
23,709 | 2 \cdot \left(-2\right) - \left(-6\right) = 2 |
-1,607 | 7/12*\pi = \frac{31}{12}*\pi - \pi*2 |
31,646 | a \cdot a \cdot a + b^3 + c^3 - 3\cdot a\cdot c\cdot b = \left(c + a + b\right)\cdot (-a\cdot c + a^2 + b^2 + c^2 - b\cdot a - c\cdot b) |
5,841 | 135 = \frac{1}{14} \cdot 1890 |
-25,827 | y \cdot 7 + 3y \cdot y = \frac{1}{y + 1}\left(3y^3 + y^2 \cdot 10 + y \cdot 7\right) |
33,148 | -(1 + e^{-2i}) = -e^{-2i} - 1 |
8,694 | y^{2^{1 + i}} = (y^{2^i})^2 |
15,840 | 1/6/(1/4) = \frac23 |
1,150 | 35 - 6\sqrt{34} = \frac{-\sqrt{34} + 6}{6 + \sqrt{34}} |
17,332 | \left(z + x + y\right)^2 = 2(xz + xy + yz) + x^2 + y^2 + z * z \Rightarrow z^2 + x^2 + y^2 = 6 |
15,114 | h_1 \cdot b_1 = h \cdot b \Rightarrow b/(b_1) = \frac{1}{h} \cdot h_1 |
2,633 | 0\cdot (y + 1) = 0\cdot y |
-25,484 | \frac{\text{d}}{\text{d}y} \sin(y) = \cos\left(y\right) |
27,690 | \cos{2 z} = \frac{-\tan^2{z} + 1}{1 + \tan^2{z}} |
37,018 | 10 + 12\cdot 5 = 70 |
-11,717 | (5/2)^2 = \dfrac{25}{4} |
23,728 | A^2 - E^2 = (-E + A) \cdot (E + A) |
31,795 | -4 * 4 * 4 - 4^2 - 10*(-4) + 8 = -32 |
24,662 | \cos^2(x) - \sin^2\left(x\right) = \cos\left(x\cdot 2\right) |
6,713 | \left(y + z\right)^2 - (-y + z) \cdot (-y + z) = 4\cdot z\cdot y |
29,155 | 6\pi = 3 \cdot 2\pi |
26,625 | \cos\left(x\right)*\sin(x) = \sin(x*2)/2 |
21,611 | \cos\left(-x - \frac{\pi}{2}\right) = -\sin{x} |
10,078 | r \cdot r_1/r_2 = r/1 \cdot r_1/r_2 = \tfrac{r_1}{r_2} \cdot r |
30,088 | \cos(\arcsin(z)) = \sqrt{1 - \sin^2\left(\arcsin(z)\right)} = \sqrt{1 - z \cdot z} |
-17,139 | 8 = 8*3k + 8\left(-4\right) = 24 k - 32 = 24 k + 32 \left(-1\right) |
28,938 | \infty + 0\times \left(-1\right) = \infty |
13,882 | \left(-2\right)^k = -2 \cdot (-2)^{k + (-1)} |
22,087 | -x + x + z + x + z - z = -z - x + x + x + z + z |
6,730 | a^{b_2 + b_1} = a^{b_2}\cdot a^{b_1} |
337 | \frac18(84 + 0 + 0 + 12 + 36 + 36 + 0 + 0) = 21 |
13,468 | (3*a + 2007) * (3*a + 2007) = (3*(a + 669)) * (3*(a + 669)) = 9*(a + 669)^2 |
23,743 | (1 - i) \cdot (1 - i) = 1^2 - 2\cdot i + i \cdot i = 1 - 2\cdot i + \left(-1\right) = -2\cdot i |
-9,898 | 88\% = \frac{88}{100} = \frac{22}{25} |
5,625 | 1 + z^4 = (z^2 - 2^{\frac{1}{2}} \cdot z + 1) \cdot (z \cdot z + 2^{\frac{1}{2}} \cdot z + 1) |
42,431 | 9 - 2 + 7 = 0 |
-16,550 | 7\sqrt{99} = \sqrt{9 \cdot 11} \cdot 7 |
-1,178 | 45/72 = \frac{\frac{1}{9}}{72*1/9} 45 = \tfrac{5}{8} |
4,729 | \frac{1}{2}\cdot ((-1)\cdot \pi) + \pi\cdot 17 = \frac{33\cdot \pi}{2} |
24,647 | \dfrac{(\pi/2)^2}{2} = \dfrac{\pi^2}{8} |
-10,569 | 3/(y\cdot 75) = \frac{1}{25\cdot y}\cdot 1 |
1,328 | x*2x * x x^2*2 = x^{1 + 2 + 2}*2*2 |
-9,594 | -50\% = -\dfrac{50}{100} = -0.5 |
20,843 | 38 + 5 \cdot \left(-1\right) = 33 |
13,308 | \cos{2\cdot x} - \sin{x}\cdot 3 + (-1) = \cos{x\cdot 2} |
28,270 | 1575 = \tfrac{10!}{4!^2 \cdot 4} |
-4,352 | \frac{44}{22} \cdot \frac{k^5}{k \cdot k} = \dfrac{k^5 \cdot 44}{22 \cdot k^2} |
14,149 | \cos\left(C\right) = \sin(\frac{\pi}{2} - C) |
12,181 | -\left((-1) + l\right)^2 + \left(1 + l + (-1)\right)^2 = 1 + 2\cdot \left((-1) + l\right) |
28,226 | x^8 + 4 = (x^4 + 2*x^2 + 2)*(x^4 - x^2*2 + 2) |
1,890 | \frac{1}{(\pi\cdot 4)^{\dfrac{1}{2}}} = 1/\left(2\cdot \sqrt{\pi}\right) |
12,222 | x + \left(-1\right) = p\Longrightarrow x = p + 1 |
22,805 | 5^{-\frac{1}{5}} = \frac{5^{\frac45}}{5} |
2,629 | (-1) + n + (-1) + (-1) = 3 \cdot \left(-1\right) + n |
23,444 | Z^x\cdot B\cdot Z = Z^x\cdot B\cdot B\cdot Z = Z^x\cdot B^x\cdot B\cdot Z = (B\cdot Z)^x\cdot B\cdot Z |
19,967 | (1 + u\cdot \left(-1 + a\right))/a = \frac1a\cdot (1 - u\cdot (1 - a)) |
-10,510 | \tfrac{3}{4z + 4(-1)} \dfrac{1}{3}3 = \frac{9}{12 z + 12 (-1)} |
3,478 | (x + 2\cdot (-1))\cdot (x + 3) = 6\cdot (-1) + x^2 + x |
27,310 | (1 + i)! = i!*(i + 1) |
39,876 | \frac{1}{5} = \dfrac15 |
3,807 | \cos(0) = \cos(\pi*2)\Longrightarrow 0 = \pi |
9,647 | \cos{\frac{105}{3}} = \cos{35} |
11,470 | \frac{1}{x\cdot 2}\cdot 2 + \frac{x}{2\cdot x} = \dfrac{x + 2}{2\cdot x} |
-4,360 | \frac{66}{48} \frac{1}{s^4}s = \dfrac{s*66}{48 s^4}1 |
6,251 | \frac{1}{1!\times 1!\times 1!\times 4!\times 4!}\times 11!/2 = 34650 |
20,678 | -2 = 2\cdot (-1) + 0 + 0\cdot (-1) |
4,672 | \frac{z^{1/2}}{z^3} = z^{-2.5} |
12,039 | E(ax) = ax |
16,936 | \left(b + h\right)\cdot (h - b) = h^2 - b^2 |
9,960 | {n \choose 2} = \frac{1}{2\times (n + 2\times (-1))!}\times n! |
6,562 | x^3 - b^3 = (x - b)*(b^2 + x^2 + x*b) |
2,661 | -(180 - X - A) + 180 = X + A |
-9,441 | D\cdot 2\cdot 2\cdot 2\cdot 5 = 40\cdot D |
-4,509 | (5 + z) (1 + z) = z^2 + z \cdot 6 + 5 |
27,023 | \cos{z}\cdot \frac{z}{\sin{z}} = \dfrac{z}{\tan{z}} |
21,360 | (z^2 + y \cdot y)^2 = (z^2 - y^2)^2 + \left(2\cdot z\cdot y\right)^2 = 5^2 + 12^2 = 13 \cdot 13\Longrightarrow y^2 + z^2 = 13 |
18,738 | \operatorname{asin}(\frac{1}{2}2^{1 / 2}) = \frac{\pi}{4} |
8,735 | \left\{1, 10, \dotsm\right\} = 10 |
183 | h_1 = \frac{y + h_2}{h_2 + z} \implies y + h_2 = h_1 \cdot (z + h_2) = h_1 \cdot z + h_1 \cdot h_2 |
-2,847 | 3^{\frac{1}{2}} \cdot 2 + 3^{1 / 2} = 4^{\frac{1}{2}} \cdot 3^{1 / 2} + 3^{\frac{1}{2}} |
16,889 | \frac{2r\pi}{4} = \frac{\pi}{2} r |
20,325 | \dfrac{1}{c}*a*\tfrac1d*b = a*b/(c*d) |
17,673 | a^{x + \varepsilon} = a^x*a^\varepsilon |
47,625 | \frac{6! \cdot \binom{3}{2} \cdot \binom{6}{3}}{\binom{11}{3} \cdot 6! \cdot \binom{8}{2}} = 1/77 |
-5,780 | \frac{1}{5 \cdot (x + 3)} = \frac{1}{15 + 5 \cdot x} |
-107 | 3 = 2 + 1 |
-10,623 | \frac{12}{12}*\frac{10}{2 z + 3} = \dfrac{120}{36 + z*24} |
12,903 | g^{p + z} = g^p*g^z |
-22,350 | 18 + z^2 - z \cdot 11 = (z + 9 \cdot (-1)) \cdot \left(z + 2 \cdot (-1)\right) |
9,439 | m + k + m + k = (k + m)\cdot 2 |
17,700 | (x - g)^2 = (x - g)*(x - g) |
23,477 | \sin(x + h) = \cos\left(h\right) \sin(x) + \cos(x) \sin(h) |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.