id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
-10,599 | \dfrac{\frac{1}{3}\cdot 3}{s + 3 (-1)} = \dfrac{3}{s\cdot 3 + 9 (-1)} |
45,025 | 3 \cdot 18 - 2 \cdot 26 = 2 |
12,732 | -2 \times 8 + 17 = 1 |
19,067 | 2.5 = \frac14 + \frac14*2 + 3*1/4 + 1/4*4 |
24,324 | \frac{1}{(1 + 5 + 4 \cdot (-1)) \cdot 3} \cdot 18 = 3 |
29,663 | 4464 = 9000 - 9 \cdot 9 \cdot 8 \cdot 7 |
-20,067 | 7 p \cdot 1/(7 p)/8 = \frac{p \cdot 7}{p \cdot 56} |
13,814 | \dfrac{1}{-1/D + 1/B} = D*(\frac{1}{-B + D} - 1/D)*D |
3,198 | 166 = -\binom{7 + 4 + (-1)}{4 + (-1)} + \binom{(-1) + 10 + 4}{4 + \left(-1\right)} |
-30,294 | 4\cdot \pi/3 = \pi + \pi/3 |
18,214 | 120 = g^2 - b^2 = (g + b) \times (g - b) |
31,052 | (y^4 + 1 - y^2) \cdot (1 + y \cdot y) = 1 + y^6 |
14,286 | -1 = \cos(r) + \cos\left(2*r\right) = \cos(r) + 2*\cos^2\left(r\right) + (-1) |
14,589 | \frac{1/x\cdot f_1}{f_2\cdot \frac1g} = f_1\cdot g/(x\cdot f_2) |
4,627 | 3\cdot (-1) + (2\cdot (-1) + \mathbb{E}(2^{-\rho}))^2 = 0 \Rightarrow \mathbb{E}(2^{-\rho}) = -\sqrt{3} + 2 |
-30,343 | 0 = (x \cdot p_0)^2 + 3 \cdot x \cdot p_0 + 18 \cdot (-1) = (x \cdot p_0 + 6) \cdot (x \cdot p_0 + 3 \cdot (-1)) |
18,953 | (-1) + 29^{32} = (1 + 29^{16}) (\left(-1\right) + 29^{16}) |
-18,966 | \dfrac{1}{18}*7 = \dfrac{A_s}{100*\pi}*100*\pi = A_s |
-5,904 | \dfrac{1}{p^2 - 5\cdot p + 6}\cdot 5 = \frac{5}{\left(p + 3\cdot (-1)\right)\cdot (2\cdot (-1) + p)} |
30,655 | (g + c)^2 = 2*c*g + g^2 + c^2 |
21,517 | 328125000 = 1^3\cdot 5^4\cdot 4200\cdot 5^3 |
24,591 | (5 + x) \times (1 + 2 \times x) = 2 \times x \times x + 11 \times x + 5 |
-20,565 | \frac{9 + 4*a}{-3*a + 6}*\frac55 = \frac{45 + a*20}{-a*15 + 30} |
30,834 | \operatorname{atan}(-\infty) = -\frac{1}{2}\times \pi |
20,652 | s^2 - q^2 = (s - q) (q + s) |
-20,764 | 7/7 \cdot \frac{1}{s + 4} \cdot (s + 7) = \dfrac{49 + 7 \cdot s}{7 \cdot s + 28} |
9,284 | \frac{h \cdot g_2}{x \cdot g_1} = h/(g_1) \cdot g_2/x |
4,786 | \tfrac{\frac{1}{2}*\pi^2}{\pi} = \pi/2 |
1,899 | a^2 + b + 2*a*\sqrt{b} - 2*a*\sqrt{b} + a^2*2 = -a^2 + b |
-19,428 | \frac15*7/(\frac{1}{5}*7) = \frac{7}{5}*5/7 |
-10,481 | -\tfrac{1}{15 + q\cdot 6}\cdot \left(6 + 15\cdot q\right) = 3/3\cdot (-\frac{2 + q\cdot 5}{5 + 2\cdot q}) |
24,317 | g/d + a/b = 0 + \frac{1}{d b} (d a + b g) |
15,626 | 1885 = 6^2 + 43^2 = 21 \cdot 21 + 38 \cdot 38 = 11 \cdot 11 + 42 \cdot 42 = 27^2 + 34^2 |
30,518 | (1 - h^2)^{\frac{1}{2}}\cdot 9^{\frac{1}{2}} = \left(9 - 9\cdot h^2\right)^{\frac{1}{2}} |
9,217 | 0 < -t \Rightarrow 0 > t |
11,918 | x*Y = (x^{1/2}*Y^{1/2})^2 |
31,612 | 0 = m^2 - m*12 + 32 \Rightarrow m = 4,8 |
32,889 | \mathbb{E}\left[Y \cdot X\right] = \mathbb{E}\left[X\right] \cdot \mathbb{E}\left[Y\right] |
20,087 | {4 \choose 2} \cdot 2 \cdot 9! - 24 \cdot 8! = 84 \cdot 8! |
2,936 | \frac{1}{2}(-d^2 + g \cdot g) = \dfrac{g^2}{2} - d^2/2 |
16,936 | (a + x)*(a - x) = -x^2 + a * a |
18,404 | 5^2 \times \binom{6}{2} \times 5^4 = 5^6 \times \binom{6}{2} |
-20,061 | \frac{p \cdot (-8)}{(-8) \cdot p} \cdot (-\frac31) = \dfrac{24 \cdot p}{\left(-8\right) \cdot p} |
1,598 | \binom{x}{x - i} = \frac{x!}{(x - i)!\cdot (x - x - i)!} = \tfrac{x!}{(x - i)!\cdot i!} = \binom{x}{i} |
7,712 | \tfrac{2}{5} = \frac{1}{50}\cdot 20 |
-4,712 | -\frac{2}{(-1) + z} - \frac{3}{z + 2} = \frac{(-1) - z\cdot 5}{z \cdot z + z + 2\cdot (-1)} |
14,480 | X \cdot Y = A \Rightarrow A = X \cdot Y |
-11,903 | \frac{9.797}{100} = 9.797*0.01 |
14,598 | |z + 2 \cdot (-1)| \cdot 4 = |8 \cdot (-1) + 4 \cdot z| |
997 | c^2*a^2 = (a*c)^2 |
6,675 | (f + g)^2 = g^2 + f \cdot f + 2 \cdot f \cdot g |
-18,334 | \frac{a\cdot (a + 9)}{(9 + a)\cdot (a + 9\cdot (-1))} = \frac{9\cdot a + a^2}{81\cdot (-1) + a^2} |
17,279 | \left(z^2 - 2 \times z + 4 \times \left(-1\right)\right) \times (z + 2) = z^3 - 8 \times z + 8 \times (-1) |
15,981 | 1 - \sin(x) = 1 - \cos(\pi/2 - x) \approx \frac{1}{2} \cdot (x - \pi/2) \cdot (x - \pi/2) |
1,522 | (z_2 - z_1) \left(z_2^{(-1) + m} + z_1 z_2^{2(-1) + m} + \dotsm + z_2 z_1^{m + 2\left(-1\right)} + z_1^{m + \left(-1\right)}\right) = -z_1^m + z_2^m |
7,358 | \left(k + 2\right)! = (k + 1 + 1)\cdot (k + 1)! |
29,053 | \frac{9}{2 \cdot \dfrac15} \cdot 1/40 = \frac{45}{80} = \dfrac{9}{16} |
-28,767 | -\frac{2}{1 + x} + x^2 - x + 2 = \dfrac{1}{1 + x}\cdot (x + x^3) |
12,380 | 2 \cdot I = \pi \Rightarrow \pi/2 = I |
34,026 | (m + 1)\cdot m! = (1 + m)! |
-5,142 | 10^7 \cdot 38.8 = 38.8 \cdot 10^{3 + 4} |
-27,579 | \frac{\text{d}z}{\text{d}x} = \tfrac{(-1) \cdot \left(6 \cdot x^2 - 5 \cdot z\right)}{(-1) \cdot (5 \cdot x + 2 \cdot z)} = \frac{6 \cdot x^2 - 5 \cdot z}{5 \cdot x + 2 \cdot z} |
11,689 | 2\cdot 2^k=2^{k+1}\;...)\implies |
39,623 | \mathbb{P}\left(B\right) = \mathbb{P}\left(B\right) |
15,676 | a^{\frac{1}{6}}\cdot a^{\frac{1}{3}} = a^{1/6}\cdot a^{\tfrac{1}{3}} = \sqrt{a} |
113 | 4\cdot (1!\cdot \binom{9}{1} + 2!\cdot \binom{9}{2} + \dotsm + 9!\cdot \binom{9}{9}) = 3945636 |
-15,234 | \dfrac{x^8}{c^2 \cdot \frac{1}{x^5}} = \frac{1}{\dfrac{1}{x^5} \cdot c \cdot c \cdot \frac{1}{x^8}} |
34,924 | \vartheta_{x_i}/2 = \vartheta_{x_i} |
16,173 | \sin(\frac{π}{6}) = \dfrac12 |
14,269 | 3\cdot 33 + 3/3 + \frac{3}{3} - \tfrac{3}{3} = 99 + 1 + 1 + (-1) = 100 |
255 | \left((-1) + 3\right)\cdot 2^1 = 4 |
5,059 | \frac1q \cdot ((-1) \cdot p) = -\frac{p}{q} |
33,454 | \left|{A \cdot B}\right| = \left|{A}\right| \cdot \left|{B}\right| = \left|{B \cdot A}\right| |
-3,413 | (5 + 3 + 2)\cdot 7^{1/2} = 10\cdot 7^{1/2} |
23,425 | \cos\left(v - x\right) - \cos(x + v) = 2\cdot \sin{v}\cdot \sin{x} |
-25,470 | \frac{\mathrm{d}}{\mathrm{d}x} (-x \cdot 7 + \cos{x}) = -\sin{x} + 7 \cdot (-1) |
3,736 | \frac{12}{30} = \dfrac25 |
25,681 | \frac{1}{4} (\pi \cdot (-1)) = \tan^{-1}(-1) |
21,736 | \gamma = q\gamma_1 n + \gamma_2 n rightarrow \frac{\gamma}{n} = \gamma_2 + \gamma_1 q |
2,843 | 4/2 + 8/2 = \frac{1}{2} \cdot (4 + 8) = 12/2 |
8,713 | 994 = \frac{1}{2 + \left(-1\right)} \cdot \left(1000 + 6 \cdot (-1)\right) |
27,794 | l*0 = l + (-1)^l*0 = l = 0 + (-1)^0 l = 0l |
-14,838 | 83 + 88 + 87 + 93 + 79 = 430 |
10,590 | (z + 1/z)^3 - 3\cdot (z + 1/z) = z^3 + \frac{1}{z^3} |
12,554 | \frac{1}{\sqrt{1 + p} + 1} = (\sqrt{1 + p} + (-1))/p |
32,847 | z^4 + 1 = \left(1 + z^2 - 2^{\frac{1}{2}} z\right) (1 + z^2 + 2^{1 / 2} z) |
9,961 | -\cos(x) = \int \sin\left(x\right)\,\mathrm{d}x |
7,459 | 3*2*π/5 + 2*π/5*2 = π*2 |
-29,460 | 10 - 3*2 = 10 + 6*\left(-1\right) = 4 |
25,575 | 4 (-1) + a_n^2 = 2 (-1) + a_{1 + n} \Rightarrow \tfrac{2 (-1) + a_{n + 1}}{2 (-1) + a_n} = a_n + 2 |
-7,787 | (28 - 44\cdot i - 56\cdot i + 88\cdot \left(-1\right))/20 = \frac{1}{20}\cdot \left(-60 - 100\cdot i\right) = -3 - 5\cdot i |
12,121 | 2*x/(3*x) - \dfrac{1}{x*3}*6 = \frac13*2 - 2/x |
-18,555 | 5y + 9(-1) = 2*\left(4y + 3(-1)\right) = 8y + 6\left(-1\right) |
3,893 | 0 = 6\cdot x + c_1\cdot 3 \Rightarrow c_1 = -x\cdot 2 |
10,603 | \dfrac{u}{u + 3 \cdot \left(-1\right)} = \frac{u + 3 \cdot \left(-1\right) + 3}{u + 3 \cdot (-1)} = 1 + \dfrac{3}{u + 3 \cdot (-1)} |
35,513 | 3 = 2 + \cos{2\cdot \pi\cdot 4} |
-4,838 | 10^2 \cdot 10\cdot 4.0 = 4\cdot 10^{4 - 1} |
-1,641 | \frac14 \cdot 3 \cdot \pi = \pi \cdot \frac{11}{4} - \pi \cdot 2 |
1,226 | 1/9 = \frac122/3 \cdot 1/3 |
34,389 | x \cdot 6 + 6 = x \cdot 6 + 3 \cdot 2 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.