id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
-6,188 | \frac{2}{\left(2 + s\right)\cdot 2} = \tfrac{2}{2\cdot s + 4} |
-15,225 | \frac{b^{15}}{b^4 \cdot j^4} = \frac{b^{15}}{j^4} \cdot \frac{1}{b^4} = \frac{1}{j^4} \cdot b^{15 + 4 \cdot (-1)} = \frac{b^{11}}{j^4} |
2,718 | \frac{1/6}{6 - i} \cdot (6 - i) = 1/6 |
-26,447 | \left(g\cdot 16/4 + x\cdot 20/4\right)\cdot 4 = 4\cdot (x\cdot 5 + 4\cdot g) |
9,454 | (b + a)^2 = 4*b*a + (a - b) * (a - b) |
28,438 | k \cdot (1 + p) = (p + 1) \cdot x \Rightarrow x \cdot p + x = p \cdot k + k |
1,458 | n + 1 = 2^n - \left(n + (-1)\right)\cdot 2^{n + 2\cdot \left(-1\right)} + \frac{1}{2!}\cdot (n + 3\cdot (-1))\cdot (n + 2\cdot (-1))\cdot 2^{n + 4\cdot (-1)} - ... |
-13,329 | \frac{35}{8 + 3 \cdot (-1)} = 35/5 = \frac{35}{5} = 7 |
29,713 | \frac{1}{(k + (-1))!}\cdot n + \frac{1}{(k + (-1))!}\cdot m = \frac{1}{(k + \left(-1\right))!}\cdot (n + m) |
-20,234 | \frac{1}{-y \cdot 8 + 18} \cdot (10 \cdot \left(-1\right) + y \cdot 10) = 2/2 \cdot \frac{5 \cdot (-1) + 5 \cdot y}{9 - 4 \cdot y} |
11,809 | \left(0 = 6*\left(-1\right) + y + 2*(-1) + y*3 \Rightarrow -8 = y*4\right) \Rightarrow -2 = y |
-6,988 | \frac{6}{10}\cdot 5/9 = 1/3 |
25,382 | b + x + d + x = d + x + b + x |
11,453 | (V + 1) \cdot (V^2 - V + 2) = (V + 1) \cdot (V^2 - V + 1) + V + 1 = V^3 + 1 + V + 1 = 6 + V |
-25,223 | x^{n + \left(-1\right)}\cdot n = d/dx x^n |
-950 | \frac95 = \frac{9}{5} |
24,871 | x + \left(-1\right) + x + 1 = x\cdot 2 |
4,768 | 2^{n + \left(-1\right)}\cdot 2^{n + \left(-1\right)}\cdot 4^n = 2^{2\cdot (n + (-1))}\cdot 4^n = 4^{n + (-1)}\cdot 4^n = 4^{2\cdot n + (-1)} |
29,462 | 2 t + \beta = 2 (\beta/2 + t) |
27,361 | \left(x \cdot y\right)^g = x^g \cdot y^g = \frac{1}{x \cdot y} = \frac{1}{y \cdot x} = (y \cdot x)^g |
25,992 | \frac{1}{1 - \frac{9}{10}} + \left(-1\right) = 10 + (-1) = 9 |
24,249 | q^2 = 2^2 + 5 = 9 \Rightarrow 3 = q |
-20,419 | \frac{1}{10*z + 100*\left(-1\right)}*(90*(-1) + 9*z) = 9/10*\frac{1}{10*(-1) + z}*(z + 10*\left(-1\right)) |
-20,512 | \frac{1}{q + 6*\left(-1\right)}*(q + 1)*10/10 = \frac{1}{q*10 + 60*(-1)}*(10 + q*10) |
37,659 | \dfrac{1}{60}4 = \frac{1}{15} |
19,366 | 1 \lt |R| \Rightarrow 1 > \frac{1}{|R|} |
17,246 | 1/(\sqrt{3.4}) = \tfrac{1}{\sqrt{4 - 0.6}} = \frac{1}{2 \cdot \sqrt{1 - 0.15}} |
-4,510 | \frac{y + 9}{y^2 + 6y + 5} = \dfrac{2}{1 + y} - \frac{1}{y + 5} |
18,545 | 16 = \dfrac{1}{3!}\times 4!\times 4 |
-5,779 | \frac{3y}{(y + 5) (6 + y)} = \frac{3y}{y * y + y*11 + 30} |
19,108 | \dfrac{1}{12} = \dfrac{1}{2*6} |
29,664 | 3\cdot (-1) + (n + 1)\cdot 2 = (-1) + 2\cdot n |
27,036 | \frac{3}{49}*\frac{4}{50} = 6/1225 |
-14,979 | 410 = 79 + 75 + 81 + 80 + 95 |
21,049 | \frac{1}{(1 + x)^{1/2} \cdot (1 + x)^{1/2}} = \frac{1}{x + 1} |
20,894 | \tfrac{y}{s} = \sin{U}\Longrightarrow y = s*\sin{U} |
-20,559 | \frac{45}{y \cdot (-10)} \cdot y = -\frac{9}{2} \cdot \frac{1}{(-5) \cdot y} \cdot ((-5) \cdot y) |
31,313 | \cos{x} = \cos(2 \cdot \pi + x) |
405 | (1 + t \cdot t)^2 - 2t \cdot t = t^4 + 1 |
7,409 | \delta + 3(-1) + 4\delta = 10 + \delta*5 + 13 \left(-1\right) |
20,987 | 97 + 32\cdot \left(-1\right) = 65 |
-18,773 | x = \frac{x\cdot 3}{3}1 |
36,851 | M \cdot y = M \cdot y |
28,731 | y \cdot z^2 = y \cdot z^2 |
-20,875 | \dfrac{1}{\left(-28\right) \cdot j} \cdot (7 \cdot j + 7 \cdot (-1)) = \frac{7}{7} \cdot \dfrac{(-1) + j}{j \cdot (-4)} |
24,471 | e^H e^A = e^{H + A} |
-6,556 | \frac{3}{27 + y^2 - y*12} = \dfrac{3}{(3 (-1) + y) (9 (-1) + y)} |
-5,621 | \frac{1}{10 + x\cdot 2}5 = \frac{5}{2(x + 5)} |
12,733 | 900 = 360 \times (-1) + 1260 |
6,935 | ( 17, t + \left(-1\right)) = 1\Longrightarrow t |
1,881 | \frac{dy}{dt}\cdot z = \frac{dz}{dt}\cdot y |
17,932 | x\cdot f'\cdot f + f^2 = c\cdot f' \implies f + f'\cdot x - f'\cdot \frac{c}{f} = 0 |
-4,753 | (z + 3)*(z + 5) = z^2 + z*8 + 15 |
5,993 | -z_0 + z = (-z_0^{1/2} + z^{1/2})\cdot (z^{1/2} + z_0^{1/2}) |
-2,583 | \sqrt{3}*\sqrt{25} + \sqrt{3}*\sqrt{9} = \sqrt{3}*5 + 3*\sqrt{3} |
13,260 | z^{216} + \left(-1\right) = \left(-1\right) + (z^6)^{36} |
12,160 | \frac{1}{5^4} \cdot 648 = \dfrac{1}{625} \cdot 648 > 1 |
-679 | e^{\pi*i/12*12} = (e^{i*\pi/12})^{12} |
25,746 | -(v + x) = \dots = -v - x |
10,398 | a^{b + x} = a^x\cdot a^b |
25,424 | (x - c*I)^n*v = (x - c*I)^{n + (-1)}*\left(x*v - c*v\right) = (x - c*I)^{n + \left(-1\right)}*x*v - (x - c*I)^{n + (-1)}*c*v |
11,522 | (z + 2)\cdot (z^2 - 2\cdot z + 4) - 2\cdot 5 = 2\cdot (-1) + z^3 |
24,944 | \ln(9^{15}) = 30\cdot \ln\left(3\right) = 14.31 |
-18,339 | \dfrac{s^2 + 12*s + 20}{s^2 + 10*s} = \dfrac{1}{(s + 10)*s}*(s + 2)*(s + 10) |
-16,610 | 2 \sqrt{16} \sqrt{7} = 2*4 \sqrt{7} = 8 \sqrt{7} |
19,491 | -(b - e) \cdot 3 = (e + a + b) \cdot (b - e) rightarrow e + a + b = -3 |
6,426 | \left(5 + 3\right)^3 - 5^3 - 3^3 = 3*3*5*\left(3 + 5\right) = 18*20 = l^2 + \left(-1\right) = (l + (-1))*\left(l + 1\right) |
5,339 | \tfrac17 28 = (1 + 2 + 3 + 4 + 5 + 6 + 7)/7 |
-4,915 | \dfrac{1}{10}\cdot 0.74 = 0.74/10 |
-11,550 | -24\cdot i - 8 + 16 = 8 - i\cdot 24 |
11,006 | 2 = \sin^2{C} + \sin^2{A} + \sin^2{B} rightarrow 2 = -(\cos^2{B} - \sin^2{C}) + 1 - \cos^2{A} + 1 |
16,950 | \tfrac{1}{37} \cdot 34 \cdot 35/38 \cdot \frac{37}{40} \cdot 36/39 \cdot 33/36 = 1309/1976 |
6,667 | z*2 = 2\left(2(-1) + z\right) + 4 |
6,799 | \left(0 = x^3 + 6 x + 20 (-1) \implies \left(x + 2 (-1)\right) (9 + (x + 1)^2) = 0\right) \implies 2 = x |
19,851 | 0 = c_0 + c_1 \implies c_0 = -c_1 |
-20,899 | \frac{1}{9} \cdot 1 = \dfrac{-7 \cdot x + 1}{-x \cdot 63 + 9} |
5,914 | (-1/2 + z)^2 + \frac{3}{4} = z \cdot z - z + 1 |
-20,193 | -18/3 = -\dfrac61 \cdot 3/3 |
14,551 | 1/7 + 1/7 + \frac17 = \frac{3}{7} |
20,362 | x h l \frac{1}{q}/q = \frac{l h x}{q q} |
9,458 | \sin(y) = \frac{y}{1 + \frac{y^2}{2\cdot 3 - y^2 + \dots}} |
-4,214 | x\frac{8}{7} = 8x/7 |
-18,955 | \dfrac35 = \tau_q/(25\cdot \pi)\cdot 25\cdot \pi = \tau_q |
3,897 | 1 = \frac{\frac12}{\frac12} |
42,172 | \frac{1}{0 \cdot 0 + 0^2}(1 + 0 + 0(-1)) = 1/0 = \infty |
7,256 | \alpha^2 + \alpha + 2(-1) = 0 \implies \alpha = 1\text{ or }-2 |
-19,630 | \frac{1}{2}\times 3/2 = 1/(2\times 2/3) |
29,553 | (1 + y)!*y! = (y + 1)*y!^2 |
12,965 | \dfrac12 \times (-\cos{2 \times \theta} + 1) = \sin^2{\theta} |
2,008 | \frac{1}{C^2} = 1/C * 1/C |
-1,871 | 7/12\cdot \pi = 23/12\cdot \pi - \pi\cdot 4/3 |
51,596 | (-1)p=-p\in S |
31,336 | \frac{1}{2}(1 + (-1)) = 0/2 = 0 |
5,336 | e^{\frac{30}{4}\cdot \pi\cdot i} = e^{\frac{15}{2}\cdot \pi\cdot i} = e^{8\cdot \pi\cdot i - \pi\cdot i/2} = e^{((-1)\cdot i\cdot \pi)/2} |
-24,665 | \frac{2 \times 3}{7 \times 3} = \dfrac{6}{21} |
-20,362 | \frac{7}{-q*63 + 14} = \frac{7*\frac17}{-q*9 + 2} |
-22,804 | 54/72 = \frac{18}{4 \cdot 18} \cdot 3 |
22,639 | f!\cdot (1 + \frac{g!}{f!}) = f! + \dfrac{g!}{f!}\cdot f! |
29,866 | C \cdot z = z \cdot C |
26,763 | 12^{\frac{1}{3}} \cdot 12^{\frac{1}{3}}/2 = 18^{\tfrac13} |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.