id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
3,773 | 5/2 = 5/8 \cdot 4 |
31,919 | 13 = {2 \choose 2}\cdot {13 \choose 1} |
-7,261 | \frac{1}{7} 3 = \dfrac{6 / 7}{2} 1 |
-9,435 | 66*s + 88*\left(-1\right) = -11*2*2*2 + 2*3*11*s |
2,493 | \dfrac{(2n)!}{n!^2} = \binom{n*2}{n} |
8,010 | \operatorname{atan}(z) = z - \frac{z^3}{3} + z^5/5 \cdot \ldots \cdot \ldots \cdot \ldots |
-6,252 | \frac{4}{18\cdot \left(-1\right) + z^2 - 3\cdot z} = \frac{1}{(z + 3)\cdot (z + 6\cdot (-1))}\cdot 4 |
-1,119 | 5/6 \cdot (-\frac16) = \frac{\left(-1\right) \cdot \frac{1}{6}}{6 \cdot \frac{1}{5}} |
2,348 | 2\cdot (-1) + (R + \frac{1}{R}) \cdot (R + \frac{1}{R}) = \dfrac{1}{R^2} + R \cdot R |
18,671 | \frac{1/5}{n} \cdot x \cdot x = \frac{0.2}{n} \cdot x^2 |
-17,563 | 28 \cdot (-1) + 39 = 11 |
27,905 | (1 + p) \cdot (p^2 + 1) \cdot (p^4 + 1) \cdot (1 + p^{16}) \cdot (1 + p^8) \cdot (\left(-1\right) + p) = (-1) + p^{32} |
-10,538 | 2/2*(-6/(r*8)) = -\frac{1}{r*16}*12 |
16,639 | T_n - T_{n + 2(-1)} = 7 = T_{n + 2(-1)} - T_{n + 4(-1)} \Rightarrow 0 = T_{n + 4(-1)} + T_n - T_{n + 2(-1)}*2 |
-2,817 | 3^{\dfrac{1}{2}}\cdot 5 - 2\cdot 3^{\frac{1}{2}} = 25^{1 / 2}\cdot 3^{1 / 2} - 4^{\frac{1}{2}}\cdot 3^{\frac{1}{2}} |
-4,454 | -\frac{2}{x + 3} - \dfrac{2}{x + (-1)} = \frac{-4 \cdot x + 4 \cdot (-1)}{x^2 + 2 \cdot x + 3 \cdot \left(-1\right)} |
-7,159 | 5/12\cdot \frac{2}{13} = 5/78 |
-22,764 | \frac{4\times 5}{5\times 9} = 20/45 |
23,306 | 0.05 \cdot S = 0.02 \cdot x \Rightarrow \frac{x}{S} = \frac52 |
-21,040 | \frac{1}{100}\cdot 20 = 2/10 |
24,891 | (2 + (2 + (2 + ...)^{1 / 2})^{1 / 2})^{1 / 2} = y = (2 + y)^{1 / 2} |
-11,694 | \dfrac{1}{81} \cdot 256 = (4/3)^4 |
21,576 | h*b = \frac{1}{2}*(h*b + b*h) = b*h |
34,041 | \frac{d}{dz} z^2 = 2 \cdot z |
8,239 | (x^2 - x + 1) \cdot \left(\left(-1\right) + x^3 + x^2\right) = x^5 + x + (-1) |
-20,783 | \frac{2}{-12} = -\frac{2}{-2} \cdot (-\frac16) |
9,325 | -d^3 + x x x = \left(-d + x\right) (d^2 + x^2 + d x) |
2,365 | \frac{y_x}{y} \times y = y_x |
16,692 | y^3 + 1 + y + y \cdot y = \left(y + 1\right) \cdot (1 + y^2) |
32,653 | M \cdot g = \frac{1}{g \cdot M} = g \cdot M |
-7,706 | \frac{1}{i + 5}(5 + i) \frac{-5 - 25 i}{5 - i} = \frac{1}{5 - i}(-25 i - 5) |
-4,828 | 10^4\cdot 45.0 = 10^{-1 + 5}\cdot 45 |
10,014 | 8 \cdot (n_1 - n_2) = (-z_2 + z_1) \cdot 12 \Rightarrow 3 \cdot (-z_2 + z_1) = 2 \cdot \left(n_1 - n_2\right) |
4,939 | \frac{1}{2}(i*(-1)) \left(-1/6\right) = i/12 |
-20,447 | 8/8\cdot \left(-\dfrac{7}{2 + i}\right) = -\tfrac{56}{8\cdot i + 16} |
-4,019 | \frac{10\cdot p \cdot p^2}{60\cdot p^2} = \frac{p^3}{p^2}\cdot \frac{10}{60} |
32,625 | \frac12\left(1 + (2*178 + 1) * (2*178 + 1)\right) \pi = 63725 \pi \approx 200197.991850009574121 |
21,225 | -40 = -27 + 13 (-1) |
375 | 11 \cdot (y + 9) = y + 144\Longrightarrow 144 + y = 99 + 11 \cdot y |
-1,426 | \frac{1}{7} 4 (-\frac15) = ((-1)*1/5)/(1/4*7) |
-20,424 | \tfrac{1}{45}\cdot \left(5\cdot y + 25\right) = 5/5\cdot (5 + y)/9 |
2,179 | x + ((-1) + x)*3 + 5*(x + 2*\left(-1\right)) + \dotsm + (x*2 + 3*(-1))*2 + 2*x + (-1) = 1^2 + 2^2 + \dotsm + x^2 |
18,226 | y^8 + (-1) = \left((-1) + y^4\right)*(1 + y^4) |
-643 | (e^{23 \cdot \pi \cdot i/12})^4 = e^{\dfrac{1}{12} \cdot 23 \cdot \pi \cdot i \cdot 4} |
21,767 | y^2 + y \cdot 2 + 1 = (y + 1)^2 |
4,684 | \left(-\frac12\right)^2 = 1/4 |
32,100 | n\cdot a := --n\cdot a |
3,729 | (-1) + \frac{C^2}{4} = \frac14\left(C + 2\right) \left(2(-1) + C\right) |
18,864 | \sin{\frac{\pi}{2}} = \cos{2\cdot \pi} |
2,856 | \dfrac{A^g}{x} = A^g/x |
28,697 | 15.75 = \frac{1}{6}*(27 + 4.5 + 9 + 13.5 + 18 + 22.5) |
1,807 | 1985 = 5\cdot 397 |
12,818 | 1395 = 3\cdot \frac{30\cdot 31}{2} |
18,639 | z \cdot \theta^n = \theta^n \cdot z |
-9,348 | 22 + 11\cdot q = 11\cdot q + 2\cdot 11 |
-3,347 | 3\sqrt{6} + \sqrt{6}*5 = \sqrt{6} \sqrt{25} + \sqrt{6} \sqrt{9} |
9,681 | (a+b)^2-(a-b)^2 = 4 ab |
-122 | 11 = 7 + 4 |
-23,217 | -\frac23\cdot (-\frac{1}{9}\cdot 8) = 16/27 |
28,687 | \frac{100}{3} = 1000/30 |
462 | 2-\frac24=\frac32 |
-4,272 | \frac{\dfrac16}{m^3}\cdot 5 = \frac{5}{m \cdot m \cdot m\cdot 6} |
32,357 | (2 \cdot 5)^k = 10^k |
-29,064 | P^8 = P^7 \cdot P |
26,759 | \dfrac{1}{4! \cdot 3! \cdot 3!} \cdot 10! = 4200 |
13,047 | 1/3 + \tfrac{1}{3} \cdot 0 + \frac{1}{2 \cdot 3} = 1/2 |
5,607 | \frac{\partial}{\partial x} u^n = nu^{n + \left(-1\right)} \frac{\mathrm{d}u}{\mathrm{d}x} |
27,240 | (\sqrt{c} - \sqrt{f}) (\sqrt{f} + \sqrt{c}) = c - f |
-4,244 | \frac{63}{54}*\frac{n}{n^5} = \frac{63*n}{n^5*54} |
748 | Z - z = x + z \implies z\cdot 2 = Z - x |
6,898 | 2 \cdot x + x = 3 \cdot x |
-18,970 | \frac{5}{24} = A_s/(64 \pi) \cdot 64 \pi = A_s |
5,171 | \sqrt{-\sqrt{2} + 2} = \frac{\sqrt{2}}{\sqrt{2 + \sqrt{2}}} |
15,007 | e^z - 6 \cdot e^{z \cdot 3} + e^{z \cdot 5} = 0\Longrightarrow 0 = 1 - e^{z \cdot 2} \cdot 6 + e^{4 \cdot z} |
37,059 | ((-1) + 2 \cdot m) \cdot |6/m| = 10.5\Longrightarrow m = 4 |
-9,489 | -U \cdot 2 \cdot 7 \cdot U + U \cdot 2 \cdot 2 = -14 \cdot U^2 + 4 \cdot U |
-4,702 | -\frac{3}{2\cdot \left(-1\right) + y} + \frac{1}{3\cdot (-1) + y}\cdot 2 = \frac{-y + 5}{6 + y^2 - y\cdot 5} |
8,561 | (2i\pi - \pi i*2)/(i*2) = 0 |
18,011 | (w^2 + z^2 - w \cdot z) \cdot (w + z) = z \cdot z \cdot z + w^3 |
44,497 | 4^1-3^1=1^2 |
41,734 | c + x + a + b = b + x + a + c |
34,190 | (a \cdot a)^{\dfrac{1}{2}} = 2 = -a |
12,438 | 838721786045180184649^2 - 397 \cdot 42094239791738433660^2 = 1 |
-9,436 | -27 r + 54 \left(-1\right) = -3*3*3 r - 2*3*3*3 |
12,714 | \frac{1}{r + 1}\cdot r^2 + 1 - r = \frac{1}{r + 1} |
3,575 | y\cdot z^2 = z^6\cdot y = z^2\cdot y |
18,842 | 9(-1) + x = (x^{\frac{1}{2}} + 3(-1)) (3 + x^{\tfrac{1}{2}}) |
28,016 | \left\lfloor{2013/(3\times 5)}\right\rfloor = 134 |
1,872 | \mathbb{P}(B) = \left(B + (-1) - 2i\right) (B + \left(-1\right) + 2i) = B^2 - 2B + 5 |
-1,887 | \frac54*π - π = π/4 |
-9,325 | 32\cdot \left(-1\right) - k\cdot 36 = -2\cdot 2\cdot 3\cdot 3\cdot k - 2\cdot 2\cdot 2\cdot 2\cdot 2 |
18,209 | 3 = 14 \cdot (-1) + 31 + 14 \cdot (-1) |
24,075 | x*2 - x * x = 1 - \left(1 - x\right)^2 |
28,718 | \{\left\{Y,B\right\};Y\} \Rightarrow Y = B |
7,034 | \sin\left(\pi*2\right) = \sin(\pi*10) |
-18,933 | 1/8 = \tfrac{1}{16*\pi}*G_x*16*\pi = G_x |
5,066 | 1/16 + 2/17 = \frac{1}{16} + \frac{1}{17} + \dfrac{1}{17} |
552 | e^u e^y = e^{y + u} |
-11,794 | 9/16 = (\frac14\cdot 3)^2 |
34,780 | |g|*|h| = |h*g| |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.