id
int64
-30,985
55.9k
text
stringlengths
5
437k
-23,553
\frac{1}{15}*4 = \frac{1}{3}*2*\frac25
4,186
K_k \cdot K_l = K_l \cdot K_k
-24,681
-30 i + 52 \left(-30 i\right) = -30 i + 52 \left(-30 i\right) = 52 (-30 i \cdot (-30 i)) = 52 (-60 i)
489
x^{17} = x^5 \cdot x^3 \cdot x^4 \cdot x^5
31,139
2\cdot \pi\cdot 1/3/(2\cdot \pi) = \frac13
-9,156
-b*7*7 b + b*2*5*7 = -b^2*49 + b*70
16,593
-x^2 + h^2 + f^2 = -2\cdot (f - x)\cdot (h - x) + (h + f - x)^2
5,807
\int_2^3 \dfrac{1}{u}\,du = \int\limits_2^3 \dfrac{1}{x \cdot u} \cdot x\,du
8,250
\tanh(x) = \tanh(z) \Rightarrow x = z
-27,869
d/dx (-5\times \cot(x)) = -5\times d/dx \cot(x) = 5\times \csc^2\left(x\right)
2,633
0 \cdot z = (z + 1) \cdot 0
2,149
(L^{1/m} - x)^m \lt (L^{\dfrac1m})^m = L < (L^{1/m} + x)^m
37,186
\int \sin\left(z\right)\,dz = -\cos(z)
29,890
\frac{1}{(z + \left(-1\right))^2} \cdot (z + (-1)) = \dfrac{1}{(-1) + z}
36,439
{10 + 4 + (-1) \choose 10} = 286
9,556
\mathbb{E}(|X|) + \mathbb{E}(|Y|) = \mathbb{E}(|Y| + |X|)
19,639
Y = a + a^2 + a \cdot a \cdot a + ... \Rightarrow Y - a = a\cdot Y
721
1 = \frac12 + \frac14 + 1/8 + 1/16 + 1/16
28,418
\frac{1}{g} \cdot N = \frac1g \cdot N
22,913
b^k = ((b^{\frac{1}{s}})^s)^k = \left(b^{1/s}\right)^{s k}
6,443
c - d + h - b \coloneqq h + c - b + d
-20,116
p*14/(2*p) = \frac{2*p}{2*p}*\frac71
-18,384
\dfrac{t^2 - 8t}{24 (-1) + t \cdot t - t \cdot 5} = \frac{t}{(3 + t) (t + 8\left(-1\right))}(8(-1) + t)
47,485
\dfrac{1}{1 - z} = \tfrac{1}{1 - w - z - w} = \frac{1}{(1 - w)\cdot (1 - \tfrac{1}{1 - w}\cdot \left(z - w\right))}
26,098
4\pi - 3\pi = \pi
24,123
d/dx e^{-2\times x} = -2\times e^{-x\times 2}
16,108
\frac{n \times l}{x \times j} = \dfrac{n \times 1/x}{\dfrac{1}{l} \times j}
39,815
5*2 + 10*2 + 20*2 + 30 + 30*2 + 20 = 180
14,263
n*m*2 = 6 \implies 3 = n*m
30,003
19 \cdot (-1) + 35 = 16
-29,372
(y + 2) (y + 5) = y * y + 5y + 2y + 10 = y * y + 7y + 10
10,258
(i - l)\cdot (l - i) = l\cdot (i - l) - i\cdot (i - l)
14,099
e + d = d - -e
12,894
2 \cdot 7/6 \cdot (12 + 9 \cdot (-1)) = 7
6,914
a^2 + a \times 4 + 21 \times (-1) = 0\Longrightarrow 0 = \left(7 + a\right) \times (3 \times (-1) + a)
-492
(e^{\frac14\cdot i\cdot 7\cdot \pi})^6 = e^{6\cdot 7\cdot \pi\cdot i/4}
18,233
\sin(-z + \frac12\times \pi) = \cos{z}
-30,427
6 = 1 \cdot 1 + 3 + x = 4 + x
-9,127
x\cdot x\cdot 2\cdot 2\cdot 5 - x\cdot 2\cdot 2\cdot 5 = x \cdot x\cdot 20 - x\cdot 20
2,119
\cos{2014 \cdot \pi/12} = \cos(\frac{\pi}{12} \cdot 2014 - 2 \cdot \pi \cdot 83)
6,746
\cos(2*x) = (-1) + \cos^2\left(x\right)*2
-11,483
i*30 + 20 = -5 + 25 + 30*i
37,417
-x^2*2 + 8 = -\left(2 + x\right) (x + 2(-1))*2
14,894
x\cdot 2 + x^2 = x + x\cdot (x + 1)
6,230
\left(2/3\right)^3 = q^3*p^3 \implies q * q * q = \frac{8}{p^3*27}
-15,832
30/10 = 6*\frac{8}{10} - 2/10*9
24,491
1 - 1/2 = \dfrac{1}{1 \cdot 2}
-25,061
6/12\cdot \dfrac{5}{11} = \frac{1}{132}\cdot 30 = 5/22
-24,549
\frac{35}{4 + 1} = 35/5 = \frac15 \cdot 35 = 7
2,926
\left(x + 3 \cdot (-1)\right) \cdot (2 + x) = x^2 - x + 6 \cdot (-1)
-5,269
10^{0 + 4}*31.5 = 10^4*31.5
-12,022
7/24 = \frac{1}{4\pi}s*4\pi = s
34,103
5\times 10 + 5 = 5 + 50
21,612
X^{n_1} \cdot C^{n_2} = C^{n_2} \cdot X^{n_1}
-3,868
\frac{a^4*48}{96*a^2}*1 = \frac{1}{a * a}*a^4*48/96
40,631
1 = \sin(\frac{1}{2}\pi)
1,455
(\pi\cdot (-2))/2 = -\pi
-13,834
\frac{1}{5 + 9} \cdot 42 = 42/14 = \frac{1}{14} \cdot 42 = 3
52,481
11 \times 11 = 121
-7,147
\frac{1}{12}\cdot 3\cdot \frac{3}{11} = \tfrac{3}{44}
1,748
a^2\cdot b^2\cdot c \cdot c = (a^2\cdot c + a\cdot b^2)\cdot (a\cdot c^2 + b^2\cdot c) = a^3\cdot c^3 + 2\cdot a^2\cdot b^2\cdot c \cdot c + a\cdot b^4\cdot c
30,726
x^2\cdot 2 + x\cdot 3 + 1 = (1 + x)\cdot (2\cdot x + 1)
-16,819
-6 = -6 \cdot (-5 \cdot z) - -6 = 30 \cdot z + 6 = 30 \cdot z + 6
-2,654
\sqrt{45} + \sqrt{80} = \sqrt{9 \cdot 5} + \sqrt{16 \cdot 5}
-10,444
-20 = 15 \times p + 3 \times (-1) + 18 = 15 \times p + 15
18,755
D \cdot d = D \cdot d
31,417
\dfrac{(2 + 1)!}{1!\cdot 2!} = 3
37,970
(\left(-1\right) + (1 + l)*2)*\frac{\pi}{3} = \left(l*2 + 1\right)*\pi/3
2,527
det\left(\frac{1}{Y^2}\right) = -1/64 = det\left(\frac{1}{Y}\right)*(-4)
15,347
x^4 = x^2 + 4 \cdot x + 4 = -2 \cdot x + 2 = -2 \cdot (x + (-1))
43,260
\frac{100}{10^4} = 0.01
-29,454
7/10\cdot (-8/5) = p - -8/5\cdot (-\dfrac{8}{5}) = p
-16,420
12 \cdot 4^{\frac{1}{2}} \cdot 11^{1 / 2} = 12 \cdot 2 \cdot 11^{\frac{1}{2}} = 24 \cdot 11^{\dfrac{1}{2}}
-29,117
({3.3} \times{10^{-4}}) \times ({8.0} \times{10^{0}}) = ({3.3} \times{8.0}) \times ({10^{-4}} \times{10^{0}})
-5,341
10^1 \cdot 5.7 = 5.7 \cdot 10^{2 + (-1)}
19,498
6 = (-\sqrt{-5} + 1) \times (\sqrt{-5} + 1)
28,834
\cos{z} = 2\cos^2{z/2} + (-1) = 1 - 2\sin^2{\frac12z}
2,467
\frac{1}{4 \cdot (-1) + 10} = 1/6
-11,792
125^{-\frac13} = (1/125)^{1/3} = \frac{1}{5}
5,629
(-1) + x^1 = (-1) + x
10,429
4\vartheta^2 - 4\vartheta + 3(-1) = \left(1 + 2\vartheta\right) (3(-1) + 2\vartheta)
23,384
\frac{1 - \tfrac{1}{x + (-1)}}{x + 2 \cdot (-1)} \cdot (-\frac1x + 1) = \frac{1}{x}
31,652
c^2 * c = d^2\Longrightarrow (d/c) * (d/c) = c
2,219
x_w \cdot G_w = x_w \cdot G_w
-8,046
\frac{1}{4\cdot i - 1}\cdot (i + 4) = \frac{-4\cdot i - 1}{-1 - 4\cdot i}\cdot \frac{4 + i}{-1 + 4\cdot i}
-7,952
(-65 + 90*i + 26*i + 36)/29 = (-29 + 116*i)/29 = -1 + 4*i
3,906
\frac{s\cdot \frac{1}{s^2 + a^2}}{a^2 + s^2} = \frac{1}{(s^2 + a^2)^2}\cdot s
-3,787
\frac{x^4}{x} = \frac{x}{x} \cdot x \cdot x \cdot x = x^3
20,523
\pi/4 + \dfrac{\pi}{2}\cdot 3 = \pi\cdot 7/4
-5,825
\dfrac{3*n}{(n + 7)*(6*(-1) + n)}*1 = \frac{n*3}{n^2 + n + 42*\left(-1\right)}
35,964
21 = 0 \times \left(-1\right) + 21
15,329
x + 1 + x = 2\cdot x + 1
-5,735
\frac{4}{(4*(-1) + z)*3} = \frac{4}{3*z + 12*(-1)}
-7,707
\frac{1}{25}*(40 - 80*i + 30*i + 60) = (100 - 50*i)/25 = 4 - 2*i
31,375
0 = \frac{4}{a^3} + \dfrac2a - \frac{b}{a^2} = \dfrac{1}{a^3} \cdot (4 + 2 \cdot a^2 - b \cdot a)
-4,493
\frac{21 \cdot (-1) + 9 \cdot x}{4 + x \cdot x - x \cdot 5} = \frac{4}{x + \left(-1\right)} + \frac{1}{x + 4 \cdot (-1)} \cdot 5
-5,389
0.36*10^6 = 0.36*10^{2*(-1) + 8}
22,406
\left(U_1 + U_2\right) Xa = U_1 Xa + Xa U_2
-25,049
\dfrac{5}{13} \cdot \dfrac{4}{12} = \dfrac{20}{156} = \dfrac{5}{39}
-10,653
\frac{135}{45 + p \cdot 15} = \frac{1}{3 + p} \cdot 9 \cdot \dfrac{1}{15} \cdot 15