id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
-7,047 | 1/20 = \dfrac{1}{6}\cdot 3\cdot \frac25/4 |
22,126 | 1 + \frac{1}{1 + m} = \dfrac{m + 2}{m + 1} |
6,465 | \frac{1}{99\cdot 999}\cdot (71700 + 71000\cdot (-1) - 717 + 71\cdot (-1)) = \tfrac{1}{99\cdot 999}\cdot (700 + 717\cdot (-1) + 71) \gt 0 |
-11,777 | \left(3/2\right)^4 = \dfrac{1}{16} \cdot 81 |
-919 | 0 + 4/10 + \frac{4}{100} + 1/1000 + 4/10000 = 4414/10000 |
21,944 | ((-1) + 2^{33}) \cdot (1 + 2^{33}) = 2^{66} + (-1) |
1,685 | \cos(\frac{5*\pi}{4}*1) = \cos(\pi*3/4) |
14,975 | g\cdot g + a\cdot a + g\cdot 2\cdot a = \left(a + g\right)\cdot \left(a + g\right) |
40,977 | \sin\left(\frac{\pi}{6}\right) = \frac{1}{2} |
-9,188 | -24 k + 20 = 2 \cdot 2 \cdot 5 - k \cdot 2 \cdot 2 \cdot 2 \cdot 3 |
20,388 | 2\times \cos{\alpha}\times \sin{\alpha} = \sin{2\times \alpha} |
609 | m - m^2 = m \implies m = 0 |
-10,605 | \tfrac{16}{12 + 16\cdot r} = \frac{4}{4}\cdot \frac{4}{3 + r\cdot 4} |
-2,146 | 4/3 \pi - \frac{7}{4} \pi = -\pi \frac{1}{12} 5 |
28,041 | \tan^{-1}{-\dfrac{1}{\sqrt{3}}} = -\frac{\pi}{6} |
-27,491 | 2 \cdot b \cdot b \cdot 2 \cdot 2 = b^2 \cdot 8 |
-23,424 | 1 - 2/7 = \frac57 |
-18,249 | \dfrac{q \cdot \left(1 + q\right)}{\left(1 + q\right) \cdot (q + 1)} = \frac{q + q^2}{q^2 + q \cdot 2 + 1} |
-10,296 | \dfrac{4}{4} \cdot \dfrac{8}{10 \cdot (-1) + l \cdot 5} = \frac{32}{40 \cdot (-1) + l \cdot 20} |
-29,374 | -g^2 + h^2 = (h + g)\cdot \left(h - g\right) |
26,154 | x^{2 \cdot k} \cdot (2 \cdot k + 1) = \frac{\partial}{\partial x} x^{k \cdot 2 + 1} |
-5,737 | \frac{4}{3y + 9(-1)} = \frac{1}{3(3(-1) + y)}4 |
2,200 | (\sqrt{2} + \sqrt{3})\times \sqrt{6}\times 2 = (2\times \sqrt{3} + \sqrt{2}\times 3)\times 2 |
-20,931 | \frac{7*k + 7*(-1)}{28*\left(-1\right) + k*7} = 7/7*\frac{1}{4*(-1) + k}*\left(k + (-1)\right) |
49,492 | 4 \Rightarrow 5 |
-10,144 | -0.49 = -5/10 = -\dfrac{1}{100}49 |
5,724 | 3q^2 = 9t^2 rightarrow 3t^2 = q^2 |
25,906 | x \geq 3 \times x + 2 \times (-1) \implies 1 \geq x |
5,972 | 10!/12! = \frac{1}{12\cdot 11\cdot 10!}\cdot 10! = \frac{1}{132} |
21,977 | g_2*(b + g_1) = g_2*b + g_2*g_1 |
26,768 | 1 = \left(-2\right)*0 + 4*\frac{1}{2*2} |
13,857 | 1 + m \cdot m - 2 \cdot m = (m + (-1))^2 |
10,404 | (\frac{1}{2} \cdot (1 + 5^{\frac{1}{2}}))^2 = \frac12 \cdot (3 + 5^{1 / 2}) |
20,015 | (d,\infty) = (d, \infty) |
1,660 | e^z = \frac12 \times \frac{\mathrm{d}}{\mathrm{d}z} (e^z)^2 |
16,083 | \frac1l + 1 = \frac{1}{l} \cdot \left(l + 1\right) |
-6,998 | 2/7 = 3/6\cdot \dfrac47 |
21,099 | (2\cdot A)^2 = 2^2\cdot A \cdot A = 4\cdot A^2 |
32,376 | \binom{7}{3}*\binom{4}{2}*2! = 7!/(3!*4!)*4!/(2!*2!)*2! = 7!/\left(3!*2!\right) |
22,825 | a\cdot \left(1 + a\right) = 9 \Rightarrow a^2 + a = 9 |
-11,642 | -6 + 2 \cdot i = 2 \cdot i + 0 + 6 \cdot (-1) |
-13,049 | 9 \left(-1\right) + 25 = 16 |
14,066 | \frac{1}{1 - x} \cdot (-x \cdot x \cdot x + 1) = x^2 + 1 + x |
24,614 | \{D,G\} \Rightarrow D \cap G = D |
21,600 | (a + b) \cdot (a + b)^{s + (-1)} = (a + b)^s |
28,951 | 2 = x \implies x \in ]2,3] |
27,450 | \left(-y + 2 = y n \Rightarrow 2 = (n + 1) y\right) \Rightarrow y = \frac{2}{n + 1} |
19,454 | x^n = (0 (-1) + x)^n |
303 | \frac{x^2 + 1}{x^2 + 3} = \frac{x^2 + 3 + 2(-1)}{x^2 + 3} = 1 - \frac{1}{x^2 + 3}2 |
-20,019 | \frac{80\cdot (-1) + 8\cdot p}{56\cdot p + 72} = \tfrac{p + 10\cdot (-1)}{7\cdot p + 9}\cdot 8/8 |
16,837 | b \times v + d \times v = (d + b) \times v |
-9,561 | 75\% = 75/100 = \frac14 \cdot 3 |
13,064 | \frac{\partial}{\partial x} (e\cdot x) = x\cdot \frac{\mathrm{d}e}{\mathrm{d}x} + e\cdot \frac{\mathrm{d}x}{\mathrm{d}x} |
157 | \mathbb{Var}[x_C - x_Z] = \mathbb{Var}[x_C] + \mathbb{Var}[-x_Z] = \mathbb{Var}[x_C] + \mathbb{Var}[x_Z] |
6,670 | \frac{x + (-1)}{x + 3 \cdot \left(-1\right)} = 1 + \frac{1}{x + 3 \cdot (-1)} \cdot 2 |
6,302 | 3*n + \left(-1\right) = 0 \implies n = 1/3 |
9,475 | \frac{1}{\frac{a}{x} - \frac{b}{x}} = \frac{x}{a - b} |
5,463 | \frac{1}{d*\chi} = \frac{1}{d*\chi} |
-1,417 | (\frac{1}{2} (-1))/(1/3 \left(-1\right)) = -\frac12 (-\frac31) |
22,389 | 2*\delta*x + \delta^2 = (\delta + x)^2 - x * x |
-9,632 | 0.01 \cdot (-10) = -10/100 = -\dfrac{1}{10} |
-29,572 | -\tfrac{10}{z} + 3*z^2/z = (10*\left(-1\right) + z^2*3)/z |
-11,526 | -2 + i = i + 0 + 2\cdot (-1) |
-23,023 | 48/120 = \frac{24*2}{5*24} |
1,105 | 37 = 5*5 + 3*4 |
4,816 | 2*-I*(-h) = 2*I*h |
19,888 | \dfrac{4}{32} = 1/8 |
12,251 | 3 + q \neq 0 \Rightarrow q \neq -3 |
-7,882 | (72 + 52\cdot i - 18\cdot i + 13)/17 = \dfrac{1}{17}\cdot (85 + 34\cdot i) = 5 + 2\cdot i |
25,787 | (-d + c) \cdot (c^2 + d \cdot c + d \cdot d) = c^3 - d^3 |
-29,581 | \frac{\text{d}}{\text{d}x} (-x\cdot 10 + x^4 - x^2\cdot 4) = 10\cdot (-1) + 4\cdot x^3 - 8\cdot x |
-7,912 | \tfrac{1}{13}\cdot (14 + 34\cdot i - 21\cdot i + 51) = \tfrac{1}{13}\cdot (65 + 13\cdot i) = 5 + i |
-14,535 | \frac{10}{4 + 2*(-1)} = 10/2 = \dfrac{10}{2} = 5 |
-24,558 | \frac{1}{2 + 6}\cdot 32 = 32/8 = \frac{32}{8} = 4 |
4,344 | x + z = 0 \implies z = -x |
29,046 | \frac{0.3}{0.3\times 0.6}\times 0.3\times 0.6 = 0.3 |
32,665 | -{2 + k \choose 3} + {k + 3 \choose 3} = {2 + k \choose 2} |
36,774 | 310 = 31/2 \cdot (2 \cdot a_1 + 30 \cdot d) = 31 \cdot \left(a_1 + 15 \cdot d\right) |
15,421 | m + 1 = m + \left(-1\right) + 2 = ... = \frac{m}{2} + 1 + m/2 |
-20,220 | \frac55*\frac{1}{-6*x + 9}*(x*(-5)) = \frac{x*(-25)}{45 - 30*x} |
24,806 | (5 - 1.8) x + (9 - 3.7) x + (9 - 3.7) x = 3.2 x + 5.3 x + 5.3 x = 13.8 x |
-2,949 | 4 \cdot \sqrt{11} = \sqrt{11} \cdot \left(3 + (-1) + 2\right) |
216 | d \cdot d = 1 \neq d |
-19,405 | 3/4*5/2 = 3*5/(4*2) = \dfrac{15}{8} |
-6,590 | \tfrac{1}{\left(a + 4(-1)\right) (5\left(-1\right) + a)}2a = \frac{2a}{20 + a^2 - a*9} |
-5,413 | 1.4 \times 10^0 = 10^{-2 - -2} \times 1.4 |
-4,353 | \frac{r^4\cdot 60}{r^2\cdot 42}\cdot 1 = \frac{r^4}{r^2}\cdot \dfrac{60}{42} |
31,193 | (c + h) \cdot (-c + h) = h^2 - c^2 |
-12,016 | \frac{1}{3} = \frac{p}{4 \cdot \pi} \cdot 4 \cdot \pi = p |
9,566 | \tfrac{2\cdot x}{\sqrt{x^2 + 1} + x + \left(-1\right)} = \dfrac{1}{\sqrt{1 + x^2} + x + \left(-1\right)}\cdot ((-1) + x \cdot x + 1 - x^2 + x\cdot 2) |
34,378 | ((-1) + n) (\left(n + \left(-1\right)\right)! + \left(n + 2(-1)\right)!) = n! |
4,805 | 1^2 + 1^2 + 2^2 + 3^2 + 3 \cdot 3 = 24 |
30,004 | \cos{y \cdot y} = \cos{y^2} |
-21,609 | \sin\left(-\pi\cdot 5/6\right) = -0.5 |
-6,015 | \dfrac{2}{3*s + 30} = \frac{2}{3*\left(10 + s\right)} |
-22,884 | 104 = 2 \cdot 2 \cdot 2 \cdot 13 |
6,681 | \cos(i\times z) = (e^{-z} + e^z)/2 = \cosh(z) |
43,387 | (1 + 2)\cdot (1 + 2) = 9 |
20,127 | 11 \times (-1) - 2 \times 5 \times (-1) = -1 |
1,780 | 2xb + z\cdot 2 = 4 \Rightarrow z = -bx + 2 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.