id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
-24,888 | 1/18 = q/(6*\pi)*6*\pi = q |
28,919 | \frac{1}{x\cdot (-1/x + 1)} = \frac{1}{x + \left(-1\right)} |
22,696 | ((\dfrac{2}{3})^{70} + 1) \cdot 3^{70} = 3^{70} + 2^{70} |
15,970 | -b\cdot \left(-c\right) = c\cdot b |
15,878 | (l^2 + \tfrac{l}{2}) \cdot (l^2 + \tfrac{l}{2}) = l^4 + l^2 \cdot l + \tfrac14\cdot l^2 \lt l^4 + l \cdot l \cdot l + l^2 + l + 1 |
9,717 | F \times x + x = x \times (F + 1) |
608 | \frac{1}{n^{1/2}} = n^{-\frac{1}{2}} |
4,656 | 300 = \dfrac{3}{10}*(6*\left(-1\right) + 1006) |
26,238 | -4/1024 + 1 = \dfrac{255}{256} |
28,432 | By + I = \left(1 + y\right) (-(I - B) \tfrac{y}{1 + y} + I) |
3,575 | y \cdot x \cdot x = x^6 \cdot y = x \cdot x \cdot y |
32,723 | -b^2 + a * a = (a - b) (a + b) |
12,955 | x^4 + 16\cdot (-1) = \left(2 + x\right)\cdot (4 + x^2)\cdot (x + 2\cdot (-1)) |
1,443 | (a + d)/d = 1 + a/d |
-5,244 | 24.0/1000 = \tfrac{1}{1000} 24 |
4,002 | \left(\dfrac23\right)^2 \left(1/3\right)^3 = \dfrac{4}{243} |
3,050 | (-1)^{1 / 2} = \frac{2^{\frac{1}{4}}}{2^{\frac14}} \cdot (-1)^{1 / 2} |
2,765 | m\cdot (v + u) = u\cdot m + m\cdot v |
21,050 | \tfrac{1}{Y*\omega} = \frac{1}{\omega*Y} |
-3,855 | \frac{7}{2 \cdot q} = 7 \cdot \frac{1}{2}/q |
36,087 | 1 = 17 + 4 \cdot (-4) |
-16,468 | 5 \times \sqrt{4 \times 5} = \sqrt{20} \times 5 |
-24,261 | \frac{126}{9 + 5} = \frac{126}{14} = \frac{126}{14} = 9 |
20,413 | 2 + (2 \cdot (-1) + z)^2 = 6 + z^2 - z \cdot 4 |
33,995 | 194906228517 = \left(3\cdot 7\cdot 11\cdot 13\right)^2\cdot 21613 |
7,289 | 3*(n + 1) + \left(-1\right) = 2 + 3*n |
-22,797 | 90/40 = 9*10/(4*10) |
34,049 | 1/9 = \frac{1}{36}4 |
-20,311 | 5/5\cdot \dfrac17\cdot (k + 4) = (20 + 5\cdot k)/35 |
20,378 | 48^2 + 4^2 + 48^2 = 34 * 34*4 |
16,808 | \frac{1}{x + 1}\cdot (x^3 + 4\cdot x^2 + 5\cdot x + 2) = (1 + x)\cdot (2 + x) |
30,969 | 1 + \tan^2\left(y\right) = \frac{1}{\cos^2(y)}\cdot (\cos^2(y) + \sin^2(y)) = \sec^2(y) |
30,838 | e^{-z} = \tfrac{1}{e^z} \neq e^{\frac1z} |
46,759 | \sin 0 = \sin \pi |
449 | e^z = (e^{\frac{z}{2}})^2 \geq (\dfrac{e}{2} \cdot z)^2 |
15,574 | d_2^2 + d_1 \cdot d_1 + 2 \cdot d_1 \cdot d_2 = (d_1 + d_2)^2 |
-5,703 | \dfrac{3}{2(n - 1)} \times \dfrac{5(n + 2)}{5(n + 2)} = \dfrac{15(n + 2)}{10(n - 1)(n + 2)} |
19,357 | \tfrac{1}{a}\cdot (1 - u + a\cdot u) = \frac1a\cdot (1 + (-1 + a)\cdot u) = \dfrac1a\cdot \left(1 - \left(1 - a\right)\cdot u\right) |
38,972 | \lim_{z \to 3} \tfrac{\frac{1}{3} - 1/z}{z + 3(-1)} = \lim_{z \to 3} \frac{1}{z^2} = \lim_{z \to 3} \frac{1}{z^2} |
20,799 | 9^2 * 9 = 8^3 + 1^3 + 6^3 |
29,500 | \frac{1 + 3^{\dfrac{1}{2}}}{(-1) + 3^{1 / 2}} = 2 + 3^{1 / 2} |
2,268 | 0 = e \cdot e\cdot 0\cdot e^3 |
44,659 | {11 \choose 4} = 11!/(4!\cdot 7!) = 330 |
-3,052 | (1 + 4 + 5) \cdot 10^{1 / 2} = 10^{1 / 2} \cdot 10 |
-19,996 | 12/2 = \dfrac22\cdot 6/1 |
31,627 | r \cdot z_1^2/(z_2) = \dfrac{(r \cdot z_1)^2}{z_2 \cdot r} |
24,857 | \cos{y\cdot 2} = \left(-1\right) + 2\cdot \cos^2{y} |
-15,171 | \frac{1}{\frac{1}{p^{16}} \cdot (x \cdot p^5)^2} = \frac{p^{16}}{p^{10} \cdot x^2} |
47,713 | 210 = 6\cdot 35 |
-1,247 | \frac{30}{35} = 30\cdot \frac{1}{5}/(35\cdot \frac{1}{5}) = 6/7 |
423 | \dfrac{1}{B - d} \cdot (-d + x) + \left(-1\right) = \frac{1}{-d + B} \cdot \left(-B + x\right) |
-5,940 | \frac{1}{4 + 2\cdot d}\cdot 5 = \frac{1}{2\cdot (d + 2)}\cdot 5 |
-7,743 | \left(24 - 32\times i - 18\times i + 24\times (-1)\right)/25 = \left(0 - 50\times i\right)/25 = -2\times i |
10,516 | 7^4 - 7^3 + 7^2 + 7 \cdot (-1) + 1 = 2101 = 11 \cdot 191 |
12,325 | 3*x * x + x*4 + 1 = -x^2 + (2*x + 1) * (2*x + 1) |
-4,459 | (2\cdot (-1) + y)\cdot (5 + y) = y \cdot y + 3\cdot y + 10\cdot (-1) |
3,585 | n + 1 = 2(1 + n)/2 |
-14,225 | \frac{24}{5 + 1} = \dfrac{24}{6} = \frac{1}{6}\cdot 24 = 4 |
9,326 | (d^{x + g} - d^x)/g = \dfrac1g \cdot (d^x \cdot d^g - d^x) = d^x \cdot \left(d^g + \left(-1\right)\right)/g |
3,138 | e \geq 2\times (2 - k + e) \implies e \leq 4\times (-1) + 2\times k |
7,586 | \frac{1}{6} \cdot (30 - 0.2 - 0.5 + \left(-1\right) + 4 \cdot (-1)) = 4.05 |
11,541 | haC \bar{f_y} = \bar{f_y} aC h |
27,017 | \frac{1}{M}*a*d/c = \frac{a*\tfrac{1}{M}}{c*\frac1d} |
23,487 | 2^g + 3^b = (1 + 1)^g + (1 + 2)^b \leq 1 + g + 1 + b*2 |
34,337 | b + 3 \cdot b \cdot b/24 = \tfrac{b^2}{8} + b |
-1,404 | -5/3*4/5 = ((-5)*1/3)/(5*\frac{1}{4}) |
-19,422 | 9*\dfrac17/(2*1/5) = 9/7*5/2 |
106 | e^y = \sum_{n=0}^\infty \frac{y^n}{n!} = 1 + y + \sum_{n=2}^\infty y^n/n! |
3,913 | \dfrac12 \cdot 3 \cdot x = k + \dfrac23 \implies \frac23 \cdot k + (2/3) \cdot (2/3) = x |
15,398 | \sin\left(4\cdot π/3\right) = -\sin(π/3) |
13,829 | -(t - a/2)^2 + a^2/4 = a*t - t * t |
10,305 | \left(a\times c = a + c \Rightarrow -c + a\times c - a = 0\right) \Rightarrow (\left(-1\right) + c)\times (a + \left(-1\right)) = 1 |
-11,449 | -8\cdot d - 4\cdot i = -4\cdot (-5\cdot d - k) = 20\cdot d + 4\cdot k |
17,385 | 12*(3z^2 + 4z + 4(-1)) = 36 z * z + 48 z + 48 (-1) = (6z + 4)^2 + 64 (-1) |
32,010 | 12 \cdot 23 \cdot 34 \cdot \dotsm \cdot n \cdot \left((-1) + n\right) = 1234 \cdot \dotsm \cdot n |
-22,374 | (r + 6\cdot (-1))\cdot (r + (-1)) = r^2 - 7\cdot r + 6 |
3,671 | (a^{p/q}*a^{t/s})^{q*s} = a^{p*s}*a^{t*q} = a^{p*s + t*q} |
-500 | \tfrac{17}{4} \pi - 4\pi = \frac{\pi}{4} |
2,722 | \sqrt{3}/2 = \cos{\dfrac{4*\pi}{24}} |
26,630 | 2\cdot 3 + 5\cdot (-1) = 1 |
14,061 | \sin(t\times 2) = 2\times \sin(t)\times \cos(t) |
-1,864 | -\frac{11}{6} \pi + \pi/12 = -\pi \frac{7}{4} |
24,240 | (y + z) (y + z) = z^2 + z y*2 + y^2 |
33,248 | (-1)^{6/2} = (-1) \cdot (-1)^2 |
27,889 | \mathbb{E}[S + x] = \mathbb{E}[x] + \mathbb{E}[S] |
10,916 | \frac{1989}{867} = 51\cdot 39/(51\cdot 17) = \frac{39}{17} |
46,229 | 19 \cdot 4 = 76 = 7 \cdot 10 + 6 |
-2,740 | -6^{1/2} \cdot 2 + 5 \cdot 6^{1/2} = -6^{1/2} \cdot 4^{1/2} + 6^{1/2} \cdot 25^{1/2} |
32,840 | -\frac83 = -\frac13*8 |
31,999 | \frac{k}{q}\cdot k\cdot q = k^2 = \frac1q\cdot k^3 |
-20,415 | -\frac{1}{5 \cdot q + 35} \cdot 45 = \dfrac15 \cdot 5 \cdot \left(-\frac{9}{7 + q}\right) |
8,051 | 3 \lt (-1) - x \cdot 3 \Rightarrow 4 < -3 \cdot x |
6,504 | \frac{(2 + (-1) + 2)!}{(2 + (-1))!\cdot 2!} = \frac{1}{1!\cdot 2!}\cdot 3! = \frac{1}{1\cdot 2}\cdot 6 = 3 |
-25,584 | \frac{1}{t^2}*3 = \frac{\mathrm{d}}{\mathrm{d}t} \left(-\frac{1}{t}*3\right) |
-20,854 | \frac{1}{x + 10\cdot (-1)}\cdot (40\cdot (-1) + 4\cdot x) = \frac{x + 10\cdot (-1)}{x + 10\cdot (-1)}\cdot 4/1 |
28,976 | 3\cdot (-2) + 7 = 1 |
-20,527 | -\frac{7}{6} \cdot (-\frac{8}{-8}) = 56/(-48) |
5,613 | \frac{1}{l}l! = (l + (-1))! |
17,574 | 6(-1) + y^2 - y = 0 \implies 3 = y |
-27,759 | d/dx (2*\tan(x)) = 2*d/dx \tan(x) = 2*\sec^2(x) |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.