id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
-11,518 | -20 + 3*(-1) + 11*i = -23 + i*11 |
-22,557 | -7/9 \cdot 8/9 = \dfrac{(-7) \cdot 8}{9 \cdot 9} = -56/81 = -56/81 |
16,491 | -\frac{20}{3} \cdot u \cdot u + 6 + (24 \cdot (-1) + 3 \cdot u^2 - 17 \cdot u) \cdot -\frac13 \cdot u = 6 - u^3 - u^2 + u \cdot 8 |
19,066 | \mathbb{E}[W_x/\left(A_x\right)] = \mathbb{E}[\frac{1}{A_x}] \cdot \mathbb{E}[W_x] |
34,721 | \frac{1}{6} \cdot (π \cdot (-1)) = \operatorname{asin}(-1/2) |
387 | 57\cdot 6 + 1 = 343 = 7^2 \cdot 7 |
13,731 | {(-1) + n + r \choose (-1) + r} = {(-1) + n + r \choose n} |
3,628 | \frac{2^2}{2 + 9} = \frac{4}{11} |
20,208 | -\tfrac15 = 2\cdot \pi - 9/5 - 2\cdot \pi - \frac85 |
-5,051 | \dfrac{10.8}{1000} = \dfrac{10.8}{1000} |
-1,605 | \pi*\frac23 = 7/6*\pi - \frac{1}{2}*\pi |
16,168 | x\times 3/4 = x\times 3/4 |
-26,389 | (-3)*(-3)*(-3)*\left(-3\right) = 81 |
18,724 | 10/4323 = \frac{1}{4323} \times 10 |
30,516 | 24/45 = \frac{1}{10!}(8!*2*7 + 9!*2 + 8!*2*8) |
5,737 | \dfrac34 + (-\frac12 + w)^2 = w^2 - w + 1 |
-26,213 | \frac{\mathrm{d}}{\mathrm{d}x} e^{x \cdot 6 - x^2 \cdot 7} = e^{x \cdot 6 - 7 \cdot x^2} \cdot (-x \cdot 14 + 6) |
-2,621 | \sqrt{7} \cdot 2 = \sqrt{7} \cdot ((-1) + 3) |
-1,652 | \pi/4 = \frac{23}{12} \cdot \pi - \pi \cdot 5/3 |
10,905 | 32 (-1) + y^3 - 12 y^2 + 36 y = (y + 2 (-1))^2 (8 (-1) + y) |
50,750 | (-1)*9 = -9 |
30,171 | \tan(y + π) = \tan(y) |
31,873 | \cos{x} + \sin{x} = A \sin(x + x_0) = A \sin{x} \cos{x_0} + A \cos{x} \sin{x_0} |
11,901 | \frac{x + (-1) + 2}{(x + (-1)) \cdot (1 + x)} = \tfrac{1}{(-1) + x} |
30,788 | e^y = 1 + y + y^2/2 + \dots |
35,845 | \cos{x*2} = \cos^2{x}*2 + \left(-1\right) |
-2,735 | \sqrt{11}\cdot 6 = \sqrt{11}\cdot (4 + 3\cdot \left(-1\right) + 5) |
-407 | (e^{\pi*i*3/2})^{17} = e^{17*i*\pi*3/2} |
3,657 | k \cdot 4 = k \cdot 3 + x \cdot 3 \implies k = 3 \cdot x |
11,411 | e^1 = z\Longrightarrow z = \cos(1) + i \sin(1) |
-28,941 | 16^{\tfrac{1}{2}} = 4 |
-23,596 | 12/49 = 3/7\cdot \dfrac{4}{7} |
24,401 | (3\cdot (-1) + y^2 - y\cdot 2)\cdot (2\cdot \left(-1\right) + y) = 6 + y^3 - 4\cdot y^2 + y |
29,856 | -(-\frac{1}{2} + R) + X - 1/2 = -R + X |
21,457 | \left(m = x^{1/2} \implies x^{\frac{1}{2}} \times x^{\frac{1}{2}} = m^2\right) \implies x = m^2 |
31,498 | b^2\cdot 3 + (b + 2\cdot a) \cdot (b + 2\cdot a) = (a \cdot a + b\cdot a + b \cdot b)\cdot 4 |
-20,944 | 9/9 \cdot (-4/9) = -36/81 |
23,735 | -(4 + 3 \cdot k) + 0 = 0 \implies -\dfrac43 = k |
22,256 | 1/(\sqrt{2}) = \frac{1}{2 \cdot \sqrt{2}} + \dfrac{1}{2 \cdot \sqrt{2}} |
6,570 | \tan\left(h\right) = \frac{2}{6} rightarrow h = 22 |
-8,782 | 54\cdot \pi + 9\cdot \pi + 9\cdot \pi = 72\cdot \pi |
24,363 | 1 + \left(x + 1\right) (x^3 + x^5 - x^4) = x^6 + x \cdot x^2 + 1 |
-29,164 | -0 - 4 = -4 |
24,427 | k \cdot p = p \cdot k |
2,953 | z^2 + 5\cdot z + 4 = \left(1 + z\right)\cdot (4 + z) |
-8,491 | -4 = -\frac{16}{4} |
30,928 | F = e^{\log_e\left(F\right)} |
-20,416 | \frac{1}{5 \cdot z + 2} \cdot (2 + z \cdot 5) \cdot \frac{2}{7} = \tfrac{1}{14 + 35 \cdot z} \cdot (z \cdot 10 + 4) |
-19,412 | \frac29\times \tfrac29 = 2\times 2/(9\times 9) = 4/81 |
6,470 | \tan{x*3} = \tan{3*x} |
15,349 | \dfrac{1}{s} \cdot l \cdot l^2 = l^3/s |
3,927 | x \cdot B = B \cdot x^2 rightarrow x \in B |
20,856 | FFF^T F^T FF^T = FFF^T FF^T F^T |
3,181 | n^9 - n^3 = \left((-1) + n^3\right)\times n \times n \times n\times (n^3 + 1) |
29,368 | \cos(-\arccos{x} + \pi) = -\cos(\arccos{x}) |
22,950 | C - B = 0 \Rightarrow C = B |
2,033 | -\cos{\alpha} = \sin(3*\pi/2 - \alpha) |
40,002 | \frac{20}{4} = 5 = \left\lfloor{\dfrac{20}{4}}\right\rfloor |
-18,320 | \dfrac{(p + 2 \cdot (-1)) \cdot p}{(2 \cdot (-1) + p) \cdot (p + 4 \cdot (-1))} = \frac{-2 \cdot p + p^2}{p^2 - 6 \cdot p + 8} |
-20,685 | -54/12 = 6/6*(-\frac92) |
10,576 | \frac{1}{35}*20 = \frac17*4 |
-26,538 | -(5*z)^2 + 3^2 = 9 - 25*z^2 |
5,342 | \frac{1}{(x + 4\cdot (-1))\cdot (x + (-1))}\cdot (x + 2) = \frac{2}{x + 4\cdot (-1)} - \frac{1}{(-1) + x} |
-16,355 | 6*16^{1 / 2}*5^{1 / 2} = 6*4*5^{\frac{1}{2}} = 24*5^{1 / 2} |
-18,614 | -\frac{2}{10} = -\dfrac15 |
21,788 | (h + x) \cdot (h^2 + x^2 - x \cdot h) = h^3 + x^3 |
5,230 | W - y - z = z + W - y |
-17,598 | 23\cdot \left(-1\right) + 43 = 20 |
30,014 | a^{2 \cdot l} \cdot a^{n \cdot 2} = a^{2 \cdot (l + n)} |
26,309 | z^R Z z = z^R Z^R z = -z^R Z |
-19,226 | 1/45 = \tfrac{A_s}{36*\pi}*36*\pi = A_s |
4,032 | 8 = \dfrac{1}{1 - a/2}a\Longrightarrow -a*4 + 8 = a |
-26,601 | 5 \cdot x^2 + 320 \cdot (-1) = 5 \cdot \left(x^2 + 64 \cdot (-1)\right) = 5 \cdot (x + 8) \cdot (x + 8 \cdot (-1)) |
10,763 | 1 = (1 - z) \cdot (z^8 + z^7 + \dots + 1) = (z^8 + z^7 + \dots + 1) \cdot (z + (-1)) |
-5,617 | \dfrac{1}{4\cdot p + 32}\cdot 5 = \frac{1}{4\cdot (8 + p)}\cdot 5 |
43,472 | 0 = 3 + 4 + 7\cdot (-1) |
23,818 | \alpha^3 + \alpha = (1 + \alpha^2) \alpha |
27,005 | \left(-x_1 + x\right) \cdot (x_2 - v) = x_2 \cdot x - v \cdot x - x_1 \cdot x_2 + x_1 \cdot v |
-4,145 | \dfrac{1}{x^4}x = \frac{x}{xx x x} = \frac{1}{x^3} |
10,590 | z^3 + \dfrac{1}{z^3} = -(1/z + z)\cdot 3 + (z + \frac1z) \cdot (z + \frac{1}{z})^2 |
8,445 | d*f*y = f*y*d |
28,492 | d_{l + 1}^2 = 2 + d_l^2 + \frac{1}{d_l d_l} \Rightarrow d_{1 + l}^2 > d_l^2 + 2 |
10,348 | -\dfrac{1}{\left(-1\right)\cdot 1/2} = 2 |
38,985 | -(2\cdot \left(-1\right) + x) = 2 - x |
16,328 | (1 + l)! = l! \cdot (l + 1) |
19,259 | \dfrac{16}{105}\cdot 2\cdot \tfrac{1}{4}\cdot \pi = \dfrac{8}{105}\cdot \pi |
26,645 | \cos(z*2) = \cos(-2*z) |
4,562 | 4 = 0^2 + 0^2 + 0^2 + 2^2 |
-6,062 | \frac{3}{k\cdot 2 + 6\cdot \left(-1\right)} = \frac{3}{\left(3\cdot (-1) + k\right)\cdot 2} |
-22,344 | k k - 3 k + 18 (-1) = \left(k + 6 \left(-1\right)\right) (k + 3) |
-9,242 | q \cdot 45 + 117 (-1) = q \cdot 3 \cdot 3 \cdot 5 - 3 \cdot 3 \cdot 13 |
24,290 | \frac{X''}{C} = -m_y^2\Longrightarrow Cm_y^2 + X'' = 0 |
28,551 | (\sqrt{A}\cdot \sqrt{B}) \cdot (\sqrt{A}\cdot \sqrt{B}) = \sqrt{A}\cdot \sqrt{B}\cdot \sqrt{A}\cdot \sqrt{B} |
-25,866 | 6^4/6 = \frac{1}{6^1} \cdot 6^4 = 6^{4 + \left(-1\right)} = 6^3 |
39,520 | 32 = 81 + 49\cdot \left(-1\right) |
30,551 | {-\frac{1}{2} \choose 2} = \tfrac{1}{8} \cdot 3 |
28,510 | e*d = d = d*e |
2,062 | -c^2 + x \cdot x = (-c + x) \cdot (c + x) |
28,362 | x \cdot (a + b) = a \cdot x + x \cdot b |
-3,057 | \sqrt{7}\cdot 9 = \sqrt{7}\cdot (4 + 5) |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.