id
int64
-30,985
55.9k
text
stringlengths
5
437k
-12,136
11/12 = \frac{q}{12\cdot \pi}\cdot 12\cdot \pi = q
24,420
2*\sqrt{n + 1} - 2*\sqrt{n} = (\sqrt{n + 1} - \sqrt{n})*2
29,029
5/24 = \dfrac{1}{12} + 3/24
31,091
\tfrac{2}{3} = -1/3 + 1
9,966
\frac{1 - t^{1 + n}}{1 - t} = \frac{1 - t^{n + 1}}{1 - t}
13,232
|x^3\cdot z| = |x^2\cdot z\cdot x| \leq \left(x^2 \cdot x^2 + z^2\right)/2\cdot |x|
3,423
\cos(x + \pi) = \cos(x)*\cos(\pi) - \sin(x)*\sin\left(\pi\right) = -\cos(x)
-521
e^{5\cdot i\cdot \pi/4\cdot 3} = \left(e^{\frac54\cdot \pi\cdot i}\right)^3
3,723
\frac{1}{(x + 1)\cdot 1/2} = \dfrac{1}{1 + x}2
30,799
37 = -3 \cdot 5 \cdot 17 \cdot 19 \cdot 19 + 2^2 \cdot 7 \cdot 11 \cdot 13 \cdot 23
15,857
\frac{1}{2} + 1/3 + \frac16 = 1
37,563
2^{h \cdot g} = 2^{g \cdot h} = (2^h)^g
-2,184
-\frac{1}{11}\cdot 2 + \dfrac{3}{11} = 1/11
1,844
(7^{\frac{1}{2}} + 1)\cdot (7^{1 / 2} + (-1)) = 6
-20,774
\frac{20 - l \cdot 5}{3 \cdot l + 12 \cdot (-1)} = \frac{4 \cdot (-1) + l}{l + 4 \cdot (-1)} \cdot (-\frac53)
10,828
9^{20} = 1.215 \dots\cdot 10^{19} > 10^{19}
19,556
1 + m = (-1) + m + 2
-3,952
8/4*\frac{r^2}{r^2} = \frac{8*r^2}{r^2*4}*1
54,551
1 = {0 \choose 0}
11,314
1 - \sin^2{\frac{y}{2}}*2 = \cos{y}
21,614
\left(5\cdot u + (-1)\right)^2 = 1 + u^2\cdot 25 - u\cdot 10
-11,800
81/49 = \left(9/7\right)^2
44,809
7*\left(2^{21} + \left(-1\right)\right) = 14680057
-10,773
\dfrac{1}{y\cdot 50 + 20}\cdot (y\cdot 40 + 10\cdot (-1)) = \frac{10}{10}\cdot \frac{4\cdot y + (-1)}{5\cdot y + 2}
16,216
2*\sinh(z) = -e^{-z} + e^z
13,287
-1/a = \dfrac{1}{a \cdot \left(-1\right)}
-7,909
\frac{1}{5 + i*3}*(3*i + 5)*\dfrac{i*19 + 25}{-3*i + 5} = \frac{1}{-i*3 + 5}*(25 + i*19)
10,858
a' + x + \left( c_2, c_1\right) = ( c_2 + a', x + c_1)
-20,174
(63 + 7\cdot q)/(q\cdot (-56)) = 7/7\cdot \frac{1}{(-8)\cdot q}\cdot (q + 9)
15,762
{3 \choose 2} {3 \choose 1} \cdot 2! = 18
27,767
a*1/b/c = \dfrac{b\dfrac{a}{b}}{bc} = \tfrac{a}{bc}
4,860
(120 + 20)\cdot (x + 3\cdot \left(-1\right)) = 140\cdot (x + 3\cdot (-1)) = 140\cdot x + 420\cdot (-1)
-20,843
\tfrac{s\cdot 4}{s\cdot 4}\cdot (-4/7) = \frac{(-1)\cdot 16\cdot s}{s\cdot 28}
26,924
39 = \left(-1\right) + 10 \times 4
18,195
1 = \sqrt{1} = \sqrt{\left(-1\right) \cdot (-1)} = \sqrt{-1} \cdot \sqrt{-1} = -1
15,678
T_n = (T_{(-1) + n} + a)/2\Longrightarrow a < T_n < T_{n + \left(-1\right)}
4,024
3 > 5 - \frac{1}{y} \times 2 rightarrow 0 \gt \frac1y \times ((-1) + y) \times 2
28,156
\sqrt{2} \cdot 1/\left(\sqrt{2}\right)/(\sqrt{2}) = \frac{\sqrt{2}}{2}
6,270
S^{1/2} T S^{\frac{1}{2}} = T S
-29,569
-\frac{2*x^4}{x} = -2*x^3
2,294
4^3*2^6*3^6 = 4^3*3^4*2^5*3^2*2^1
11,072
2z_k = z_k
25,434
3/x - \frac{x}{2} = \tfrac3x - x/2
2,769
x \cdot (\gamma + \beta) = x \cdot \beta + \gamma \cdot x
8,729
(-1) + x^3 = (x + \left(-1\right)) (1 + x^2 + x)
32,176
((-1) + n) * ((-1) + n) = n^2 - n*2 + 1
-20,029
\dfrac{14 - p*63}{p*70 + 35*(-1)} = \frac{1}{10*p + 5*(-1)}*(2 - 9*p)*7/7
270
(-1) + m^2 = m^2 - m + m + (-1)
42,432
\tfrac{11!}{2!\cdot 2!\cdot 2!\cdot 2!} = 2494800
-30,850
y^2 + y\cdot 5 = \dfrac{1}{-2\cdot y + y^2}\cdot (y^4 + 3\cdot y^3 - y \cdot y\cdot 10)
38,755
\frac{1}{60}15 = 1/4
48,778
x^2 = (5 + 1 - 2*5^{1/2})/4 = \frac12*(3 - 5^{1/2}) = 1 - \frac12*(5^{1/2} + (-1)) = 1 - x
15,092
\frac{1}{a^4}b = \frac{b}{a^4}
1,059
\frac{1 - \frac{1}{t}}{t + (-1)} = 1/t
24,403
\cos{z} \cdot z^2 = 1 - \cos{z}\Longrightarrow \cos{z} = \frac{1}{z^2 + 1}
27,126
10^k \cdot 10 = 10^{k + 1}
9,588
B = B \cap K \Rightarrow \left\{B, K\right\}
42,114
\binom{6}{3} \times \binom{10}{4} = 4200
9,639
(d \cdot g)^2 = d \cdot d \cdot g^2
46,450
5 = {4 \choose 1} + {4 \choose 0}
-19,178
\frac{1}{9} \cdot 7 = \dfrac{D_p}{49 \cdot \pi} \cdot 49 \cdot \pi = D_p
13,908
2 + 3 + 4 + 5 = \frac12 \cdot (2 + 3 + 4 + 5 + 5 + 4 + 3 + 2)
-15,945
5 \cdot 7/10 - 6 \cdot \frac{3}{10} = 17/10
-1,526
5/9\cdot (-7/4) = \dfrac{1}{1/5\cdot 9}\cdot \left((-7)\cdot \tfrac14\right)
-4,184
\tfrac1611 = \frac1611
8,138
\left(x\cdot 5 + 5 = 20\Longrightarrow 15 = 5\cdot x\right)\Longrightarrow 3 = x
41,848
672 = 6! - 2 \cdot 4!
5,978
\frac32 + 1 = \dfrac{5}{2}
11,252
\pi \frac23 \cdot 2 \cdot \dfrac15/2 = 2\pi/15
17,877
\left(-h = z \implies h^l = z^l\right) \implies h^l + z^l = h^l\cdot 2
21,446
\sin(3 \pi/2) = \sin(\frac12 \pi + \pi)
11,411
e^1 = z rightarrow \cos(1) + i\sin(1) = z
11,609
1/2 = 5\cdot \frac{1}{8}/2 + 3\cdot \tfrac{1}{8}/2
22,897
\frac1n (n + 1) = 1/n + 1
-25,021
4 \cdot z - z^2 \cdot z \cdot \frac{64}{3} + z^5 \cdot 1024/5 - 16384/7 \cdot z^7 + \ldots = \tan^{-1}{4 \cdot z}
25,007
u\cdot Y = Y\cdot u
-1,832
\pi \cdot 7/12 = \pi \cdot 3/4 - \tfrac{\pi}{6}
-2,418
\sqrt{25\cdot 3} - \sqrt{9\cdot 3} = -\sqrt{27} + \sqrt{75}
29,826
{2 \cdot n \choose n} = \tfrac{1}{n!^2} \cdot (2 \cdot n)! \approx \dfrac{4^n}{\left(\pi \cdot n\right)^{1/2}}
27,380
d \cdot d^l = d^{1 + l}
7,176
8 = (a + b + c + d)/4 \Rightarrow a + b + c + d = 32
5,135
392/3 + \tfrac{1}{3}\times 1120 = \frac{1}{3}\times 1512 = 504
-19,044
\frac{5}{8} = E_x/(4\pi)\cdot 4\pi = E_x
14,335
\left(x*2 + a*2 = g \Rightarrow g*3 = 2*a + 2*x + 2*g\right) \Rightarrow g = \dfrac23*\left(x + a + g\right)
42,522
\dfrac{1}{a + \left(a^2 + (-1)\right)^{\frac{1}{2}}} = \frac{a - (a^2 + (-1))^{1/2}}{(a - (a^2 + (-1))^{1/2})\cdot (a + (a \cdot a + \left(-1\right))^{\frac{1}{2}})} = \dfrac{1}{a^2 - a^2 + (-1)}\cdot \left(a - (a^2 + (-1))^{1/2}\right) = a - (a^2 + (-1))^{1/2}
16,504
A^2 + A \cdot Y + Y \cdot A + Y^2 = (Y + A)^2
-5,107
10^{2 - 2}\cdot 8.7 = 10^0\cdot 8.7
4,659
\frac{H}{x} = H/x
35,069
\dfrac{\dfrac{1}{2}}{2} \cdot 1/2 = \frac{1}{8}
50,134
0\cdot2=2\cdot0=0
4,765
(t + 3 \times (-1))^2 + 9 \times \left(-1\right) + 8 = 8 + t^2 - t \times 6
-18,582
-1/7 = -\frac17
980
(f\cdot c/c)^2 = \frac{f}{c}\cdot c\cdot f/c\cdot c
-20,487
\frac19 \cdot (4 + q \cdot 2) \cdot 2/2 = \frac{1}{18} \cdot (4 \cdot q + 8)
3,064
56 = \left(7 + (-1)\right)\cdot 8 + ((-1) + 2)\cdot 7 + 1
31,953
x^2 - \varphi! = 2001\Longrightarrow 2001 + \varphi! = x^2
-12,421
\dfrac{15}{5} = 3
-1,418
10/14 = \frac{10\cdot 1/2}{14\cdot \dfrac12} = 5/7
26,118
(\left(-1\right) + 1) \cdot 20 + 250 = 250
7,421
-7/6 + 7 = 35/6