id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
-12,136 | 11/12 = \frac{q}{12\cdot \pi}\cdot 12\cdot \pi = q |
24,420 | 2*\sqrt{n + 1} - 2*\sqrt{n} = (\sqrt{n + 1} - \sqrt{n})*2 |
29,029 | 5/24 = \dfrac{1}{12} + 3/24 |
31,091 | \tfrac{2}{3} = -1/3 + 1 |
9,966 | \frac{1 - t^{1 + n}}{1 - t} = \frac{1 - t^{n + 1}}{1 - t} |
13,232 | |x^3\cdot z| = |x^2\cdot z\cdot x| \leq \left(x^2 \cdot x^2 + z^2\right)/2\cdot |x| |
3,423 | \cos(x + \pi) = \cos(x)*\cos(\pi) - \sin(x)*\sin\left(\pi\right) = -\cos(x) |
-521 | e^{5\cdot i\cdot \pi/4\cdot 3} = \left(e^{\frac54\cdot \pi\cdot i}\right)^3 |
3,723 | \frac{1}{(x + 1)\cdot 1/2} = \dfrac{1}{1 + x}2 |
30,799 | 37 = -3 \cdot 5 \cdot 17 \cdot 19 \cdot 19 + 2^2 \cdot 7 \cdot 11 \cdot 13 \cdot 23 |
15,857 | \frac{1}{2} + 1/3 + \frac16 = 1 |
37,563 | 2^{h \cdot g} = 2^{g \cdot h} = (2^h)^g |
-2,184 | -\frac{1}{11}\cdot 2 + \dfrac{3}{11} = 1/11 |
1,844 | (7^{\frac{1}{2}} + 1)\cdot (7^{1 / 2} + (-1)) = 6 |
-20,774 | \frac{20 - l \cdot 5}{3 \cdot l + 12 \cdot (-1)} = \frac{4 \cdot (-1) + l}{l + 4 \cdot (-1)} \cdot (-\frac53) |
10,828 | 9^{20} = 1.215 \dots\cdot 10^{19} > 10^{19} |
19,556 | 1 + m = (-1) + m + 2 |
-3,952 | 8/4*\frac{r^2}{r^2} = \frac{8*r^2}{r^2*4}*1 |
54,551 | 1 = {0 \choose 0} |
11,314 | 1 - \sin^2{\frac{y}{2}}*2 = \cos{y} |
21,614 | \left(5\cdot u + (-1)\right)^2 = 1 + u^2\cdot 25 - u\cdot 10 |
-11,800 | 81/49 = \left(9/7\right)^2 |
44,809 | 7*\left(2^{21} + \left(-1\right)\right) = 14680057 |
-10,773 | \dfrac{1}{y\cdot 50 + 20}\cdot (y\cdot 40 + 10\cdot (-1)) = \frac{10}{10}\cdot \frac{4\cdot y + (-1)}{5\cdot y + 2} |
16,216 | 2*\sinh(z) = -e^{-z} + e^z |
13,287 | -1/a = \dfrac{1}{a \cdot \left(-1\right)} |
-7,909 | \frac{1}{5 + i*3}*(3*i + 5)*\dfrac{i*19 + 25}{-3*i + 5} = \frac{1}{-i*3 + 5}*(25 + i*19) |
10,858 | a' + x + \left( c_2, c_1\right) = ( c_2 + a', x + c_1) |
-20,174 | (63 + 7\cdot q)/(q\cdot (-56)) = 7/7\cdot \frac{1}{(-8)\cdot q}\cdot (q + 9) |
15,762 | {3 \choose 2} {3 \choose 1} \cdot 2! = 18 |
27,767 | a*1/b/c = \dfrac{b\dfrac{a}{b}}{bc} = \tfrac{a}{bc} |
4,860 | (120 + 20)\cdot (x + 3\cdot \left(-1\right)) = 140\cdot (x + 3\cdot (-1)) = 140\cdot x + 420\cdot (-1) |
-20,843 | \tfrac{s\cdot 4}{s\cdot 4}\cdot (-4/7) = \frac{(-1)\cdot 16\cdot s}{s\cdot 28} |
26,924 | 39 = \left(-1\right) + 10 \times 4 |
18,195 | 1 = \sqrt{1} = \sqrt{\left(-1\right) \cdot (-1)} = \sqrt{-1} \cdot \sqrt{-1} = -1 |
15,678 | T_n = (T_{(-1) + n} + a)/2\Longrightarrow a < T_n < T_{n + \left(-1\right)} |
4,024 | 3 > 5 - \frac{1}{y} \times 2 rightarrow 0 \gt \frac1y \times ((-1) + y) \times 2 |
28,156 | \sqrt{2} \cdot 1/\left(\sqrt{2}\right)/(\sqrt{2}) = \frac{\sqrt{2}}{2} |
6,270 | S^{1/2} T S^{\frac{1}{2}} = T S |
-29,569 | -\frac{2*x^4}{x} = -2*x^3 |
2,294 | 4^3*2^6*3^6 = 4^3*3^4*2^5*3^2*2^1 |
11,072 | 2z_k = z_k |
25,434 | 3/x - \frac{x}{2} = \tfrac3x - x/2 |
2,769 | x \cdot (\gamma + \beta) = x \cdot \beta + \gamma \cdot x |
8,729 | (-1) + x^3 = (x + \left(-1\right)) (1 + x^2 + x) |
32,176 | ((-1) + n) * ((-1) + n) = n^2 - n*2 + 1 |
-20,029 | \dfrac{14 - p*63}{p*70 + 35*(-1)} = \frac{1}{10*p + 5*(-1)}*(2 - 9*p)*7/7 |
270 | (-1) + m^2 = m^2 - m + m + (-1) |
42,432 | \tfrac{11!}{2!\cdot 2!\cdot 2!\cdot 2!} = 2494800 |
-30,850 | y^2 + y\cdot 5 = \dfrac{1}{-2\cdot y + y^2}\cdot (y^4 + 3\cdot y^3 - y \cdot y\cdot 10) |
38,755 | \frac{1}{60}15 = 1/4 |
48,778 | x^2 = (5 + 1 - 2*5^{1/2})/4 = \frac12*(3 - 5^{1/2}) = 1 - \frac12*(5^{1/2} + (-1)) = 1 - x |
15,092 | \frac{1}{a^4}b = \frac{b}{a^4} |
1,059 | \frac{1 - \frac{1}{t}}{t + (-1)} = 1/t |
24,403 | \cos{z} \cdot z^2 = 1 - \cos{z}\Longrightarrow \cos{z} = \frac{1}{z^2 + 1} |
27,126 | 10^k \cdot 10 = 10^{k + 1} |
9,588 | B = B \cap K \Rightarrow \left\{B, K\right\} |
42,114 | \binom{6}{3} \times \binom{10}{4} = 4200 |
9,639 | (d \cdot g)^2 = d \cdot d \cdot g^2 |
46,450 | 5 = {4 \choose 1} + {4 \choose 0} |
-19,178 | \frac{1}{9} \cdot 7 = \dfrac{D_p}{49 \cdot \pi} \cdot 49 \cdot \pi = D_p |
13,908 | 2 + 3 + 4 + 5 = \frac12 \cdot (2 + 3 + 4 + 5 + 5 + 4 + 3 + 2) |
-15,945 | 5 \cdot 7/10 - 6 \cdot \frac{3}{10} = 17/10 |
-1,526 | 5/9\cdot (-7/4) = \dfrac{1}{1/5\cdot 9}\cdot \left((-7)\cdot \tfrac14\right) |
-4,184 | \tfrac1611 = \frac1611 |
8,138 | \left(x\cdot 5 + 5 = 20\Longrightarrow 15 = 5\cdot x\right)\Longrightarrow 3 = x |
41,848 | 672 = 6! - 2 \cdot 4! |
5,978 | \frac32 + 1 = \dfrac{5}{2} |
11,252 | \pi \frac23 \cdot 2 \cdot \dfrac15/2 = 2\pi/15 |
17,877 | \left(-h = z \implies h^l = z^l\right) \implies h^l + z^l = h^l\cdot 2 |
21,446 | \sin(3 \pi/2) = \sin(\frac12 \pi + \pi) |
11,411 | e^1 = z rightarrow \cos(1) + i\sin(1) = z |
11,609 | 1/2 = 5\cdot \frac{1}{8}/2 + 3\cdot \tfrac{1}{8}/2 |
22,897 | \frac1n (n + 1) = 1/n + 1 |
-25,021 | 4 \cdot z - z^2 \cdot z \cdot \frac{64}{3} + z^5 \cdot 1024/5 - 16384/7 \cdot z^7 + \ldots = \tan^{-1}{4 \cdot z} |
25,007 | u\cdot Y = Y\cdot u |
-1,832 | \pi \cdot 7/12 = \pi \cdot 3/4 - \tfrac{\pi}{6} |
-2,418 | \sqrt{25\cdot 3} - \sqrt{9\cdot 3} = -\sqrt{27} + \sqrt{75} |
29,826 | {2 \cdot n \choose n} = \tfrac{1}{n!^2} \cdot (2 \cdot n)! \approx \dfrac{4^n}{\left(\pi \cdot n\right)^{1/2}} |
27,380 | d \cdot d^l = d^{1 + l} |
7,176 | 8 = (a + b + c + d)/4 \Rightarrow a + b + c + d = 32 |
5,135 | 392/3 + \tfrac{1}{3}\times 1120 = \frac{1}{3}\times 1512 = 504 |
-19,044 | \frac{5}{8} = E_x/(4\pi)\cdot 4\pi = E_x |
14,335 | \left(x*2 + a*2 = g \Rightarrow g*3 = 2*a + 2*x + 2*g\right) \Rightarrow g = \dfrac23*\left(x + a + g\right) |
42,522 | \dfrac{1}{a + \left(a^2 + (-1)\right)^{\frac{1}{2}}} = \frac{a - (a^2 + (-1))^{1/2}}{(a - (a^2 + (-1))^{1/2})\cdot (a + (a \cdot a + \left(-1\right))^{\frac{1}{2}})} = \dfrac{1}{a^2 - a^2 + (-1)}\cdot \left(a - (a^2 + (-1))^{1/2}\right) = a - (a^2 + (-1))^{1/2} |
16,504 | A^2 + A \cdot Y + Y \cdot A + Y^2 = (Y + A)^2 |
-5,107 | 10^{2 - 2}\cdot 8.7 = 10^0\cdot 8.7 |
4,659 | \frac{H}{x} = H/x |
35,069 | \dfrac{\dfrac{1}{2}}{2} \cdot 1/2 = \frac{1}{8} |
50,134 | 0\cdot2=2\cdot0=0 |
4,765 | (t + 3 \times (-1))^2 + 9 \times \left(-1\right) + 8 = 8 + t^2 - t \times 6 |
-18,582 | -1/7 = -\frac17 |
980 | (f\cdot c/c)^2 = \frac{f}{c}\cdot c\cdot f/c\cdot c |
-20,487 | \frac19 \cdot (4 + q \cdot 2) \cdot 2/2 = \frac{1}{18} \cdot (4 \cdot q + 8) |
3,064 | 56 = \left(7 + (-1)\right)\cdot 8 + ((-1) + 2)\cdot 7 + 1 |
31,953 | x^2 - \varphi! = 2001\Longrightarrow 2001 + \varphi! = x^2 |
-12,421 | \dfrac{15}{5} = 3 |
-1,418 | 10/14 = \frac{10\cdot 1/2}{14\cdot \dfrac12} = 5/7 |
26,118 | (\left(-1\right) + 1) \cdot 20 + 250 = 250 |
7,421 | -7/6 + 7 = 35/6 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.