id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
1,694 | 16^0 \cdot 15 + 16^1 = 31 |
-17,081 | -1 = -(-1)\cdot t - 6 = t - 6 = t + 6\cdot \left(-1\right) |
4,712 | (y + \dfrac{1}{2!}\cdot y^2 + \dfrac{y^3}{3!} + \cdots)^{-1} = \frac{1}{e^y + (-1)} |
13,670 | |-1/z + 1/x| = |\frac{1}{xz}(x - z)| |
10,942 | \dfrac{cN}{c} = \frac{1}{c}N c |
-19,063 | \frac{1}{45}\cdot 31 = A_q/(81\cdot \pi)\cdot 81\cdot \pi = A_q |
11,188 | y = \tan^{-1}(z) \Rightarrow \tan(y) = z |
27,511 | \sqrt{7 + \sqrt{48}} = \sqrt{\frac12\cdot 8} + \sqrt{6/2} |
-19,822 | 1.625 = \dfrac{65}{40} |
33,049 | 88 = 4\cdot (-1) + 2\cdot 27 + 2\cdot 19 |
17,706 | \frac{1}{z + 0 \cdot (-1)} \cdot (\sin{1/z} \cdot z + 0 \cdot (-1)) = \sin{1/z} |
3,929 | x \times 2 \times 3 + 2 = 2 + 6 \times x |
-1,200 | \frac{1}{(-1) \times 4 \times 1/7} \times (1/5 \times (-6)) = -\frac{7}{4} \times (-6/5) |
24,509 | \tfrac{103}{165} = 1/3 + 1/5 + 1/11 |
-1,717 | \dfrac{π}{6} - \frac{1}{12}π = π/12 |
3,463 | (3 + 2*z)/6 = \frac{1}{3}*z + \frac{1}{2} |
-2,051 | \pi \cdot 5/6 + \pi \cdot \tfrac{1}{12} \cdot 5 = 5/4 \cdot \pi |
-536 | \frac{1}{2}*3*π = \frac{35}{2}*π - 16*π |
21,404 | \frac{n\cdot \left(m + (-1)\right)}{n\cdot m + \left(-1\right)} = \frac{1}{(-1) + m\cdot n}\cdot \left(n\cdot m + \left(-1\right) - n + (-1)\right) |
24,946 | \dfrac23 \cdot \pi + 0 \cdot (-1) = \frac13 \cdot 2 \cdot \pi |
4,091 | \frac{1}{C^4} = (\frac{1}{C})^4 |
-10,392 | -\frac{180}{y\cdot 20 + 100} = 20/20\cdot (-\tfrac{9}{y + 5}) |
-9,711 | 80\% = 80/100 = \frac{4}{5} |
-4,998 | 39.5 \cdot 10^2 = 10^{5 - 3} \cdot 39.5 |
17,981 | \frac{31031}{46656} = -\left(5/6\right)^6 + 1 |
8,089 | e^1 = (1 + 1/n)^n exp(0) = (1 + 1/n)^n |
19,985 | \frac1x = \frac{1}{x \cdot (0 + 1)} |
12,747 | 6 < X + 3 \cdot (-1) rightarrow X \gt 9 |
17,941 | 5^z = y \implies 5^{2 z} = (5^z)^2 = y^2 |
-18,674 | 0.8931 = 0.9332 - 0.0401 |
6,513 | (x + 1) * (x + 1) = (x + 1)*(x + 1) = x^2 + 2*x + 1 |
16,467 | (-1) + \frac{1}{2} = -\frac12 |
9,229 | \frac{1}{\left(1 - x\right) \cdot \left(1 - x\right)} \cdot \left(1 + x + x^2\right) = \frac{1}{(1 - x)^3} \cdot (x^2 + 1 + x) \cdot \left(-x + 1\right) |
4,542 | \frac{y}{x} = \frac{y + 0*(-1)}{x + 0*(-1)} |
14,356 | \sin{2\cdot x} = 2\cdot \sin{x}\cdot \cos{x} = 2\cdot \sqrt{1 - \cos^2{x}}\cdot \cos{x} |
27,236 | \frac{3\pi}4 - \frac{\pi}4 = \frac{2\pi}4 |
600 | z \cdot t \cdot s = t \cdot z \cdot s |
-3,819 | c^5/c = cc c c c/c = c^4 |
-25,530 | \frac{d}{dt} (3t^2 + t) = 2\cdot 3t + 1 = 6t + 1 |
2,465 | 1 + x*\ln(a) + \ln(a)^2*x^2/2 + x^3*\ln(a)^3*\ldots/6 = a^x |
9,537 | \sin(-b + a) = \sin{a} \cos{b} - \sin{b} \cos{a} |
-5,560 | \frac{(8*(-1) + n)*3}{(n + 9)*(n + 8*(-1))*6} - \dfrac{(n + 9)*10}{6*(n + 9)*(8*(-1) + n)} - \frac{12}{6*(n + 8*\left(-1\right))*(9 + n)} = \dfrac{1}{6*(n + 8*\left(-1\right))*\left(n + 9\right)}*(12*\left(-1\right) + \left(n + 8*\left(-1\right)\right)*3 - 10*\left(9 + n\right)) |
40,945 | {4 \choose 2} \cdot {9 \choose 1} = 54 |
8,087 | -s = -q*p\Longrightarrow s = p*q |
-4,396 | \frac47 \cdot q \cdot q \cdot q = q^3 \cdot \frac47 |
34,550 | \sec(\operatorname{atan}\left(z\right)) = \left(z^2 + 1\right)^{1/2} |
37,525 | 1 = 1*... |
-24,656 | \dfrac{5}{6\cdot 5}\cdot 1 = 5/30 |
53,076 | -\int_{-\pi/2}^{\pi/2}\frac{d\theta}{a-\sin\theta}=-\int_{0}^{\pi/2}\frac{2a\,d\theta}{a^2-\sin^2\theta}=-\int_{0}^{\pi/2}\frac{2a\,d\theta}{a^2-\cos^2\theta} |
-1,445 | \frac{5 / 2}{\frac17 \cdot 6} \cdot 1 = \frac16 \cdot 7 \cdot 5/2 |
1,140 | (l + 1)^2 = (l + (-1))^2 + 4\cdot l |
7,984 | 0 = \frac{1}{2} + \tfrac{1}{2} \cdot (-1) |
13,267 | (a+0)^2 = a^2 = a^2 + 2(0) + 0^2 |
260 | \sin{Z} = \sin(\pi - Z) |
17,980 | \cos(-x + 2\cdot \pi) = \cos{x} |
29,685 | 1 = \left(1 + 0\right)^{\tfrac12} |
-10,216 | 0.01 (-92) = -92/100 = -\tfrac{23}{25} |
-12,744 | 11 = 6 \cdot (-1) + 17 |
-20,601 | -7/5 \frac{6s + \left(-1\right)}{(-1) + s*6} = \frac{-s*42 + 7}{30 s + 5\left(-1\right)} |
15,020 | 4^{\frac{1}{3}}\cdot 6 = 3\cdot 32^{\frac{1}{3}} |
-9,454 | -7*5 - 3*5 n = 35 \left(-1\right) - 15 n |
-3,397 | -\sqrt{13} + \sqrt{9 \cdot 13} = -\sqrt{13} + \sqrt{117} |
24,251 | 3*(2^1 + 1) = 9 |
24,425 | 2\cdot (1 + x)\cdot \left(x + (-1)\right) = x^2\cdot 2 + 2\cdot (-1) |
18,290 | \left(7500 - 60 \cdot 20 - 80 \cdot 60\right)/30 = \frac{1}{30} \cdot 1500 = 50 |
-3,347 | 3 \times \sqrt{6} + \sqrt{6} \times 5 = \sqrt{25} \times \sqrt{6} + \sqrt{6} \times \sqrt{9} |
-13,465 | -\frac{4}{7 + 9(-1)} = -4/(-2) = -\frac{4}{-2} = 2 |
-6,698 | \frac{70}{100} + 8/100 = \dfrac{1}{10} \cdot 7 + \frac{8}{100} |
38,091 | x^{135} = (x^2 \cdot x)^{45} |
29,591 | 4\cdot \binom{3}{2} = 12 |
16,012 | (\frac{2}{\dfrac{1}{13} \cdot 5 + 1})^{\tfrac{1}{2}} = 13^{1 / 2}/3 |
11,100 | \left(0 \leq z\Longrightarrow r = |r|\right)\Longrightarrow \int\limits_0^z r\,dr = z\times z/2 |
-626 | -π \cdot 4 + 65/12 \cdot π = \frac{17}{12} \cdot π |
-2,926 | \left(2*\left(-1\right) + 3\right)*\sqrt{6} = \sqrt{6} |
22,895 | 63\% \cdot y = 90\% \cdot 70\% \cdot y |
4,789 | \lim_{n \to \infty} z^{\lim_{n \to \infty} y} = \lim_{n \to \infty} z^y |
-10,663 | 12/12 \cdot \frac{1}{g \cdot g}2 = \frac{24}{12 g \cdot g} |
-4,807 | 10^5*28.5 = 28.5*10^{1 + 4} |
23,124 | C + \frac14\cdot x^3 + \frac{x}{4}\cdot x^2 = \frac{x^3}{2} + C |
3,438 | p^u = p^w \Rightarrow p^{u - w} = 1 |
-22,730 | \dfrac{40}{90} = \dfrac{10}{9\cdot 10}\cdot 4 |
42,672 | ( 1, 0) \left( 0, 1\right) = ( 2, 0) ( 0, 1) = 0 |
26,543 | a^n \cdot x = a \cdot \dots \cdot a \cdot a \cdot x = a \cdot \dots \cdot a \cdot x \cdot a = a \cdot \dots \cdot x \cdot a \cdot a = \dots = x \cdot a^n |
24,578 | \frac{1}{x} = \tfrac{1}{x^{1/2} x^{\frac{1}{2}}} |
-3,423 | 6\sqrt{10} = (5 + 2 + (-1)) \sqrt{10} |
31,840 | 1/(l\cdot k)\cdot k\cdot l = \frac{l}{k}\cdot k\cdot \frac{1}{l} |
-580 | \pi \cdot 80/3 - 26 \cdot \pi = \tfrac{1}{3} \cdot 2 \cdot \pi |
-12,681 | 82 + 37 (-1) = 45 |
-12,367 | 80^{1/2} = 5^{1/2} \cdot 4 |
-9,237 | -72 \cdot p + 24 = -2 \cdot 2 \cdot 2 \cdot 3 \cdot 3 \cdot p + 2 \cdot 2 \cdot 2 \cdot 3 |
34,798 | {1 + b \choose c + 1} = {b \choose c} + {b \choose 1 + c} |
30,723 | \left(2 - z = 1.75 - 0.5\cdot z \Rightarrow 0.5\cdot z = 0.25\right) \Rightarrow z = 0.5 |
18,467 | \dfrac{2}{3}*\left(1 - 6*d^2\right) = 0 \Rightarrow 1/(\sqrt{6}) = d |
29,766 | \frac{\partial}{\partial f} (u_1 \cdot u_2) = \frac{\partial}{\partial f} (u_1 \cdot u_2) |
-20,404 | \frac18\times 1 = \frac{9\times \left(-1\right) - 9\times z}{-z\times 72 + 72\times (-1)} |
1,518 | 1 + h^3 = (1 + h)\cdot (1 - h + h^2) = (1 + h)\cdot 3^{1/2}\cdot h |
10,145 | \frac{1}{1 + (1 + \frac{1 - m}{m \cdot 2}) \cdot 2} = \frac{m}{2 \cdot m + 1} |
32,789 | n \cdot v + v = (1 + n) \cdot v |
10,287 | x/x = 1 \Rightarrow x = 1/(\frac1x) |
7,151 | (1 + A + ... + A^5)^8 = (\frac{1}{1 - A}*(1 - A^6))^8 = \frac{(1 - A^6)^8}{\left(1 - A\right)^8} |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.